skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution structures with bound Mn2+ and Cd2+ map the metal import pathway in an Nramp transporter
Transporters of the Nramp (Natural resistance-associated macrophage protein) family import divalent transition metal ions into cells of most organisms. By supporting metal homeostasis, Nramps prevent diseases and disorders related to metal insufficiency or overload. Previous studies revealed that Nramps take on a LeuT fold and identified the metal-binding site. We present high-resolution structures ofDeinococcus radiodurans(Dra)Nramp in three stable conformations of the transport cycle revealing that global conformational changes are supported by distinct coordination geometries of its physiological substrate, Mn2+, across conformations, and by conserved networks of polar residues lining the inner and outer gates. In addition, a high-resolution Cd2+-bound structure highlights differences in how Cd2+and Mn2+are coordinated by DraNramp. Complementary metal binding studies using isothermal titration calorimetry with a series of mutated DraNramp proteins indicate that the thermodynamic landscape for binding and transporting physiological metals like Mn2+is different and more robust to perturbation than for transporting the toxic Cd2+metal. Overall, the affinity measurements and high-resolution structural information on metal substrate binding provide a foundation for understanding the substrate selectivity of essential metal ion transporters like Nramps.  more » « less
Award ID(s):
1942763
PAR ID:
10493349
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CTEA (N,N‐bis[2‐(carboxylmethyl)thioethyl]amine) is a mixed donor ligand that has been incorporated into multiple fluorescent sensors such as NiSensor‐1 that was reported to be selective for Ni2+. Other metal ions such as Zn2+do not produce an emission response in aqueous solution. To investigate the coordination chemistry and selectivity of this receptor, we prepared NiCast, a photocage containing the CTEA receptor. Cast photocages undergo a photoreaction that decreases electron density on a metal‐bound aniline nitrogen atom, which shifts the binding equilibrium toward unbound metal ion. The unique selectivity of CTEA was examined by measuring the binding affinity of NiCast and the CTEA receptor for Ni2+, Zn2+, Cd2+and Cu2+under different conditions. In aqueous solution, Ni2+binds more strongly to the aniline nitrogen atom than Cd2+; however, in CH3CN, the change in affinity virtually disappears. The crystal structure of [Cu(CTEA)], which exhibits a Jahn–Teller–distorted square pyramidal structure, was also analyzed to gain more insight into the underlying coordination chemistry. These studies suggest that the fluorescence selectivity of NiSensor‐1 in aqueous solution is due to a stronger interaction between the aniline nitrogen atom and Ni2+compared to other divalent metal ions except Cu2+
    more » « less
  2. null (Ed.)
    BY-kinases represent a highly conserved family of protein tyrosine kinases unique to bacteria without eukaryotic orthologs. BY-kinases are regulated by oligomerization-enabled transphosphorylation on a C-terminal tyrosine cluster through a process with sparse mechanistic detail. Using the catalytic domain (CD) of the archetypal BY-kinase, Escherichia coli Wzc, and enhanced-sampling molecular dynamics simulations, isothermal titration calorimetry and nuclear magnetic resonance measurements, we propose a mechanism for its activation and nucleotide exchange. We find that the monomeric Wzc CD preferentially populates states characterized by distortions at its oligomerization interfaces and by catalytic element conformations that allow high-affinity interactions with ADP but not with ATP·Mg 2+ . We propose that oligomer formation stabilizes the intermonomer interfaces and results in catalytic element conformations suitable for optimally engaging ATP·Mg 2+ , facilitating exchange with bound ADP. This sequence of events, oligomerization, i.e., substrate binding, before engaging ATP·Mg 2+ , facilitates optimal autophosphorylation by preventing a futile cycle of ATP hydrolysis. 
    more » « less
  3. Abstract Cadmium is laser-cooled and trapped with excitations to triplet states with UVA light, first using only the 67 kHz wide 326 nm intercombination line and subsequently, for large loading rates, the 25 MHz wide 361 nm3P23D3transition. Eschewing the hard UV 229 nm1S01P1transition, only small magnetic fields gradients, less than 6 G cm−1, are required enabling a 100% transfer of atoms from the 361 nm trap to the 326 nm narrow-line trap. All 8 stable cadmium isotopes are straightforwardly trapped, including two nuclear-spin- 1 2 fermions that require no additional repumping. We observe evidence of3P2collisions limiting the number of trapped metastable atoms, report isotope shifts for111Cd and113Cd of the 326 nm1S03P1, 480nm3P13S1, and 361 nm3P23D3transitions, and measure the114Cd 5s5p3P2→ 5s5d3D3transition frequency to be 830 096 573(15) MHz. 
    more » « less
  4. Gelsolin is a calcium (Ca2+) dependent, pH sensitive actin-binding protein that regulates actin filament dynamics to remodel the actin cytoskeleton. It is known that gelsolin binding induces conformational changes of actin filaments, leading to filament severing. However, the influence of physiological conditions, such as pH variations, on gelsolin-mediated filament severing activities, mechanics and conformations remains unclear despite their role in actin-actin interactions. Using Total Internal Reflection Fluorescence (TIRF) microscopy imaging and pyrene fluorescence assays, we demonstrate that filament severing efficiencies by gelsolin are enhanced in acidic conditions. In addition, analysis of filament thermal fluctuations using TIRF reveals that gelsolin binding stiffens actin filaments. Furthermore, we show that gelsolin binding induces conformational changes in filaments by measuring the filament half-pitch using high resolution Atomic Force Microscopy imaging. Together, our results suggest that pH modulation plays a key role in gelsolin-mediated filament severing activities, bending mechanics, and conformational changes, which have implications in many cellular processes including cell motility and morphogenesis. 
    more » « less
  5. Abstract De novodesign provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron–sulfur clusters, the design of tetranuclear clusters with oxygen‐rich environments remains in its infancy. In previous work, we described the design of homotetrameric four‐helix bundles that bind tetra‐Zn2+clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal‐binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the correspondingapo‐proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in theapostate, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster. 
    more » « less