skip to main content


Title: Alaska Peatland Map (2019-2021)
Peatlands cover 3% of the global land surface, yet store 25% of the world’s soil organic carbon. These organic-rich soils are widespread across permafrost regions, representing nearly 18% of land surface and storing between 500 and 600 petagrams of carbon (PgC). Peat (i.e., partially decomposed thick organic layers) accumulates due to the imbalance between plant production and decomposition often within saturated, nutrient deficient, and acidic soils, which limit decomposition. As warmer and drier conditions become more prevalent across northern ecosystems, the vulnerability of peatland soils may increase with the susceptibility of peat-fire ignitions, yet the distribution of peatlands across Alaska remains uncertain. Here we develop a new high-resolution (20 meter (m) resolution) wall-to-wall ~1.5 million square kilometer (km2) peatland map of Alaska, using a combination of Sentinel-1 (Dual-polarized Synthetic Aperture Radar), Sentinel-2 (Multi-Spectral Imager), and derivatives from the Arctic Digital Elevation Model (ArcticDEM). Machine learning classifiers were trained and tested using peat cores, ground observations, and sub-meter resolution image interpretation, which was spatially constrained by a peatland suitability model that described the extent of terrain suitable for peat accumulation. This product identifies peatlands in Polar, Boreal, and Maritime ecoregions in Alaska to cover 26,842 (4.6%), 69,783 (10.4%), and 13,506 (5.3%) km2, respectively.  more » « less
Award ID(s):
1928048
NSF-PAR ID:
10493431
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
peatlands organic soil soil horizon alaska carbon fire histosols
Format(s):
Medium: X
Location:
Alaska
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Drainage canals associated with logging and agriculture dry out organic soils in tropical peatlands, thereby threatening the viability of long‐term carbon stores due to increased emissions from decomposition, fire, and fluvial transport. In Southeast Asian peatlands, which have experienced decades of land use change, the exact extent and spatial distribution of drainage canals are unknown. This has prevented regional‐scale investigation of the relationships between drainage, land use, and carbon emissions. Here, we create the first regional map of drainage canals using high resolution satellite imagery and a convolutional neural network. We find that drainage is widespread—occurring in at least 65% of peatlands and across all land use types. Although previous estimates of peatland carbon emissions have relied on land use as a proxy for drainage, our maps show substantial variation in drainage density within land use types. Subsidence rates are 3.2 times larger in intensively drained areas than in non‐drained areas, highlighting the central role of drainage in mediating peat subsidence. Accounting for drainage canals was found to improve a subsidence prediction model by 30%, suggesting that canals contain information about subsidence not captured by land use alone. Thus, our data set can be used to improve subsidence and associated carbon emissions predictions in peatlands, and to target areas for hydrologic restoration.

     
    more » « less
  2. Abstract. Peatlands have often been neglected in Earth system models (ESMs).Where they are included, they are usually represented via a separate, prescribed grid cell fraction that is given the physical characteristics of a peat (highly organic) soil. However, in reality soils vary on a spectrum between purely mineral soil (no organic material) and purely organicsoil, typically with an organic layer of variable thickness overlying mineral soil below. They are also dynamic, with organic layer thickness and its properties changing over time. Neither the spectrumof soil types nor their dynamic nature can be captured by current ESMs. Here we present a new version of an ESM land surface scheme (Joint UK Land Environment Simulator, JULES) where soil organic matter accumulation – and thus peatland formation, degradation and stability – is integratedin the vertically resolved soil carbon scheme. We also introduce the capacity to track soil carbon age as a function of depth in JULES and compare this to measured peat age–depth profiles. The new scheme is tested and evaluated at northern and temperate sites. This scheme simulates dynamic feedbacks between the soil organic material and its thermal and hydraulic characteristics. We show that draining the peatlands can lead to significant carbon loss, soil compaction and changes in peat properties. However, negative feedbacks can lead to the potential for peatlands to rewet themselves following drainage.These ecohydrological feedbacks can also lead to peatlands maintaining themselves in climates where peat formation would not otherwise initiate in the model, i.e. displaying some degree of resilience. The new model produces similar results to the original model for mineral soils and realistic profiles of soil organic carbon for peatlands.We evaluate the model against typical peat profiles based on 216 northern and temperate sites from a global dataset of peat cores.The root-mean-squared error (RMSE) in the soil carbon profile is reduced by 35 %–80 % in the best-performing JULES-Peat simulationscompared with the standard JULES configuration. The RMSE in these JULES-Peat simulations is 7.7–16.7 kg C m−3 depending on climate zone, which is considerably smaller than the soil carbon itself (around 30–60 kg C m−3). The RMSE at mineral soil sites is also reducedin JULES-Peat compared with the original JULES configuration (reduced by ∼ 30 %–50 %). Thus, JULES-Peat can be used as a complete scheme that simulates both organic and mineral soils. It does not requireany additional input data and introduces minimal additional variables to the model. This provides a new approach for improving the simulation of organic and peatland soils andassociated carbon-cycle feedbacks in ESMs. 
    more » « less
  3. Abstract

    Recent amplified climate warming in the Arctic has caused profound changes in terrestrial ecosystems, with the potential for strong feedback on climate change. Arctic tundra landscapes have developed patchy and thin organic soil (peat) layers at the surface that may continue to grow into mature peatlands and become a larger carbon sink under future warming. Here we use paleoecological analyses of multiple soil and peat cores collected from the North Slope of Alaska to document and understand the formation and development histories of tundra peat patches and permafrost peatlands. We find a consistent peat development sequence for peat patches, first from mineral soils to sedge peat during the Little Ice Age, and then toSphagnumpeat during the recent warming with high carbon accumulation rates. These findings suggest that climate cooling is likely critical for the initial peat buildup on tundra soils due to reduced decomposition, whereas climate warming triggers the regime shift into an increased abundance ofSphagnummosses that are likely central to enhancing their carbon sink capacity. Additionally, peat patches become similar to permafrost peatlands in the vicinity in terms of ecosystem processes and carbon dynamics, and therefore may have developed the same ecohydrological feedback system to maintain their long‐term stability. This study implies that the potential future expansion of peat patches into peatlands may strongly alter the carbon balance of Arctic tundra, supporting the new United Nations Environment Programme's report that calls for incorporating widespread shallow peat into understanding the peatland–carbon–climate nexus.

     
    more » « less
  4. Lewis, David B. (Ed.)
    Peatlands account for 15 to 30% of the world’s soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10–20 cm layer, were 440 ± 85.1 g kg -1 and 13.9 ± 7.4 g kg -1 , with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446–532 g kg -1 ) and lowest in intermediate and extremely rich fens (375–414 g kg -1 ). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks. 
    more » « less
  5. Abstract

    Peatland ecosystems cover only 3% of the world’s land area; however, they store one-third of the global soil carbon (C). Microbial communities are the main drivers of C decomposition in peatlands, yet we have limited knowledge of their structure and function. While the microbial communities in the Northern Hemisphere peatlands are well documented, we have limited understanding of microbial community composition and function in the Southern Hemisphere peatlands, especially in Australia. We investigated the vertical stratification of prokaryote and fungal communities from Wellington Plains peatland in the Australian Alps. Within the peatland complex, bog peat was sampled from the intact peatland and dried peat from the degraded peatland along a vertical soil depth gradient (i.e., acrotelm, mesotelm, and catotelm). We analyzed the prokaryote and fungal community structure, predicted functional profiles of prokaryotes using PICRUSt, and assigned soil fungal guilds using FUNGuild. We found that the structure and function of prokaryotes were vertically stratified in the intact bog. Soil carbon, manganese, nitrogen, lead, and sodium content best explained the prokaryote composition. Prokaryote richness was significantly higher in the intact bog acrotelm compared to degraded bog acrotelm. Fungal composition remained similar across the soil depth gradient; however, there was a considerable increase in saprotroph abundance and decrease in endophyte abundance along the vertical soil depth gradient. The abundance of saprotrophs and plant pathogens was two-fold higher in the degraded bog acrotelm. Soil manganese and nitrogen content, electrical conductivity, and water table level (cm) best explained the fungal composition. Our results demonstrate that both fungal and prokaryote communities are shaped by soil abiotic factors and that peatland degradation reduces microbial richness and alters microbial functions. Thus, current and future changes to the environmental conditions in these peatlands may lead to altered microbial community structures and associated functions which may have implications for broader ecosystem function changes in peatlands.

     
    more » « less