Abstract Alluvial aquifers are key components of river floodplains and biodiversity worldwide, but they contain extreme environmental conditions and have limited sources of carbon for sustaining food webs. Despite this, they support abundant populations of aquifer stoneflies that have large proportions of their biomass carbon derived from methane. Methane is typically produced in freshwater ecosystems in anoxic conditions, while stoneflies (Order: Plecoptera) are thought to require highly oxygenated water. The potential importance of methane‐derived food resources raises the possibility that stonefly consumers have evolved anoxia‐resistant behaviors and physiologies. Here we tested the anoxic and hypoxic responses of 2,445 stonefly individuals in three aquifer species and nine benthic species. We conducted experimental trials in which we reduced oxygen levels, documented locomotor activity, and measured survival rates. Compared to surface‐dwelling benthic relatives, stoneflies from the alluvial aquifer on the Flathead River (Montana) performed better in hypoxic and anoxic conditions. Aquifer species sustained the ability to walk after 4–76 h of anoxia vs. 1 h for benthic species and survived on average three times longer than their benthic counterparts. Aquifer stoneflies also sustained aerobic respiration down to much lower levels of ambient oxygen. We show that aquifer taxa have gene sequences for hemocyanin, an oxygen transport respiratory protein, representing a possible mechanism for surviving low oxygen. This remarkable ability to perform well in low‐oxygen conditions is unique within the entire order of stoneflies (Plecoptera) and uncommon in other freshwater invertebrates. These results show that aquifer stoneflies can exploit rich carbon resources available in anoxic zones, which may explain their extraordinarily high abundance in gravel‐bed floodplain aquifers. These stoneflies are part of a novel food web contributing biodiversity to river floodplains.
more »
« less
Oxic methane production from methylphosphonate in a large oligotrophic lake: limitation by substrate and organic carbon supply
ABSTRACT While methane is typically produced under anoxic conditions, methane supersaturation in the presence of oxygen has been observed in both marine and fresh waters. The biological cleavage of methylphosphonate (MPn), which releases both phosphate and methane, is one pathway that may contribute to this paradox. Here, we explore the genomic and functional potential for oxic methane production (OMP) via MPn in Flathead Lake, a large oligotrophic freshwater lake in northwest Montana. Time series and depth profile measurements show that epilimnetic methane was persistently supersaturated despite high oxygen levels, suggesting a possiblein situoxic source. Metagenomic sequencing indicated that 10% of microorganisms in the lake, many of which are related to the Burkholderiales (Betaproteobacteria) and Actinomycetota, have the genomic capacity to cleave MPn. We experimentally demonstrated that these organisms produce methane stoichiometrically with MPn consumption across multiple years. However, methane was only produced at appreciable rates in the presence of MPn when a labile organic carbon source was added, suggesting that this process may be limited by both MPn and labile carbon supply. Members of the generaAcidovorax,Rhodoferax, andAllorhizobium, organisms which make up less than 1% of Flathead Lake communities, consistently responded to MPn addition. We demonstrate that the genomic and physiological potential for MPn use exists among diverse, resident members of Flathead Lake and could contribute to OMP in freshwater lakes when substrates are available. IMPORTANCEMethane is an important greenhouse gas that is typically produced under anoxic conditions. We show that methane is supersaturated in a large oligotrophic lake despite the presence of oxygen. Metagenomic sequencing indicates that diverse, widespread microorganisms may contribute to the oxic production of methane through the cleavage of methylphosphonate. We experimentally demonstrate that these organisms, especially members of the genusAcidovorax, can produce methane through this process. However, appreciable rates of methane production only occurred when both methylphosphonate and labile sources of carbon were added, indicating that this process may be limited to specific niches and may not be completely responsible for methane concentrations in Flathead Lake. This work adds to our understanding of methane dynamics by describing the organisms and the rates at which they can produce methane through an oxic pathway in a representative oligotrophic lake.
more »
« less
- PAR ID:
- 10493458
- Editor(s):
- Glass, Jennifer B.
- Publisher / Repository:
- American Society for Microbiology
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 89
- Issue:
- 12
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia‐oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite‐oxidizing bacteria (NOB)Nitrotogadominate at depth in the summer, the ammonia‐oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.more » « less
-
Abstract Nitrite-oxidizing bacteria (NOB) are important nitrifiers whose activity regulates the availability of nitrite and dictates the magnitude of nitrogen loss in ecosystems. In oxic marine sediments, ammonia-oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are significantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be discovered. Here we report a bacterial phylumCandidatusNitrosediminicolota, members of which are more abundant than canonical NOBs and are widespread across global oligotrophic sediments.Ca. Nitrosediminicolota members have the functional potential to oxidize nitrite, in addition to other accessory functions such as urea hydrolysis and thiosulfate reduction. While one recovered species (Ca. Nitrosediminicola aerophilus) is generally confined within the oxic zone, another (Ca. Nitrosediminicola anaerotolerans) additionally appears in anoxic sediments. CountingCa. Nitrosediminicolota as a nitrite-oxidizer helps to resolve the apparent abundance imbalance between AOA and NOB in oxic marine sediments, and thus its activity may exert controls on the nitrite budget.more » « less
-
We used a combination of approaches to measure primary production and plankton photophysiology in oligotrophic Flathead Lake, Montana (USA). Estimates of net ecosystem production (NEP) based on measurements of O2 to Ar ratios, together with radiocarbon (14C) assimilation incubations, revealed seasonal patterns in NEP and 14C-primary production. NEP was elevated during the summer, becoming negative during the winter. Rates of 14C-primary production were similarly seasonal, with peak rates in the summer and lower rates in the winter. Photosynthesis-irradiance curves indicated that plankton productivity in the subsurface chlorophyll maximum was light-limited year-round, while plankton production in the near-surface waters was light-saturated during the summer. We found that, despite physiological evidence of photoinhibition during the summer, this process appears to play a minor role in constraining primary production in Flathead Lake. Finally, use of metagenomic sequencing provided insight into photophysiological potential among the abundant cyanobacteria in the lake. Cyanobacteria belonging to Synechococcus/Cyanobium were well represented, some of which demonstrated seasonality while others appeared to be present year-round. Analyses of the metagenomic assembled genomes (MAGs) from these cyanobacteria revealed genes involved in phycoerythrin and phycoerythrobilin syntheses, with one MAG also possessing genes that encode phycourobilin. Such results point to flexibility in pigmentation as central to the physiology and competitive success of cyanobacteria in this lake.more » « less
-
ABSTRACT The marine unicellular cyanobacterium Prochlorococcus is an abundant primary producer and widespread inhabitant of the photic layer in tropical and subtropical marine ecosystems, where the inorganic nutrients required for growth are limiting. In this study, we demonstrate that Prochlorococcus high-light strain MIT9301, an isolate from the phosphate-depleted subtropical North Atlantic Ocean, can oxidize methylphosphonate (MPn) and hydroxymethylphosphonate (HMPn), two phosphonate compounds present in marine dissolved organic matter, to obtain phosphorus. The oxidation of these phosphonates releases the methyl group as formate, which is both excreted and assimilated into purines in RNA and DNA. Genes encoding the predicted phosphonate oxidative pathway of MIT9301 were predominantly present in Prochlorococcus genomes from parts of the North Atlantic Ocean where phosphate availability is typically low, suggesting that phosphonate oxidation is an ecosystem-specific adaptation of some Prochlorococcus populations to cope with phosphate scarcity. IMPORTANCE Until recently, MPn was only known to be degraded in the environment by the bacterial carbon-phosphorus (CP) lyase pathway, a reaction that releases the greenhouse gas methane. The identification of a formate-yielding MPn oxidative pathway in the marine planctomycete Gimesia maris (S. R. Gama, M. Vogt, T. Kalina, K. Hupp, et al., ACS Chem Biol 14:735–741, 2019, https://doi.org/10.1021/acschembio.9b00024 ) and the presence of this pathway in Prochlorococcus indicate that this compound can follow an alternative fate in the environment while providing a valuable source of P to organisms. In the ocean, where MPn is a major component of dissolved organic matter, the oxidation of MPn to formate by Prochlorococcus may direct the flow of this one-carbon compound to carbon dioxide or assimilation into biomass, thus limiting the production of methane.more » « less