skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph states of atomic ensembles engineered by photon-mediated entanglement
Abstract Graph states are a broad family of entangled quantum states, each defined by a graph composed of edges representing the correlations between subsystems. Such states constitute versatile resources for quantum computation and quantum-enhanced measurement. Their generation and engineering require a high level of control over entanglement. Here we report on the generation of continuous-variable graph states of atomic spin ensembles, which form the nodes of the graph. We program the entanglement structure encoded in the graph edges by combining global photon-mediated interactions in an optical cavity with local spin rotations. By tuning the entanglement between two subsystems, we either localize correlations within each subsystem or enable Einstein–Podolsky–Rosen steering—a strong form of entanglement that enables the extraction of precise information from one subsystem through measurements on the other. We further engineer a four-mode square graph state, highlighting the flexibility of our approach. Our method is scalable to larger and more complex graphs, laying groundwork for measurement-based quantum computation and advanced protocols in quantum metrology.  more » « less
Award ID(s):
1753021
PAR ID:
10493519
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Physics
Volume:
20
Issue:
5
ISSN:
1745-2473
Format(s):
Medium: X Size: p. 770-775
Size(s):
p. 770-775
Sponsoring Org:
National Science Foundation
More Like this
  1. One fundamental goal of quantum networks is to provide node-to-node entanglement distribution. In this work, we develop a simulator, called A 2 Tango, for entanglement generation between two remote atom-ensemble nodes in a quantum network following Briegel, Dur, Cirac and Zoller (BDCZ) protocol. We encode quantum information to the two spatial modes of local atomic-ensemble spin waves and polarization states of single photons. The basic operations include atom-photon entanglement generation, quantum memory write-read operations, two-photon Bell-state measurement, and quantum state tomography. We model multi-photon events during the local excitation and propagation to account for their induced error in entanglement generation and distribution. We investigate the entanglement generation rate and fidelity as functions of the parameters which are realizable in experiments. Our work improves the open-sourced SeQUeNCe simulator and inspires the development of future quantum networks. 
    more » « less
  2. Quantum spin liquids, exotic phases of matter with topological order, have been a major focus in physics for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to realize robust quantum computation. We used a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms were placed on the links of a kagome lattice, and evolution under Rydberg blockade created frustrated quantum states with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type was detected by using topological string operators that provide direct signatures of topological order and quantum correlations. Our observations enable the controlled experimental exploration of topological matter and protected quantum information processing. 
    more » « less
  3. Bosonic Gaussian states are a special class of quantum states in an infinite dimensional Hilbert space that are relevant to universal continuous-variable quantum computation as well as to near-term quantum sampling tasks such as Gaussian Boson Sampling. In this work, we study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary. We first derive formulas that are asymptotically exact in the number of modes for the Rényi-2 Page curve (the average Rényi-2 entropy of a subsystem of a pure bosonic Gaussian state) and the corresponding Page correction (the average information of the subsystem) in certain squeezing regimes. We then prove various results on the typicality of entanglement as measured by the Rényi-2 entropy by studying its variance. Using the aforementioned results for the Rényi-2 entropy, we upper and lower bound the von Neumann entropy Page curve and prove certain regimes of entanglement typicality as measured by the von Neumann entropy. Our main proofs make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries. In this light, we propose future research directions where this symmetry might also be exploited. We conclude by discussing potential applications of our results and their generalizations to Gaussian Boson Sampling and to illuminating the relationship between entanglement and computational complexity. 
    more » « less
  4. Reinforcement learning with neural networks (RLNN) has recently demonstrated great promise for many problems, including some problems in quantum information theory. In this work, we apply reinforcement learning to quantum hypothesis testing, where one designs measurements that can distinguish between multiple quantum states while minimizing the error probability. Although the Helstrom measurement is known to be optimal when there are m=2 states, the general problem of finding a minimal-error measurement is challenging. Additionally, in the case where the candidate states correspond to a quantum system with many qubit subsystems, implementing the optimal measurement on the entire system may be impractical. In this work, we develop locally-adaptive measurement strategies that are experimentally feasible in the sense that only one quantum subsystem is measured in each round. RLNN is used to find the optimal measurement protocol for arbitrary sets of tensor product quantum states. Numerical results for the network performance are shown. In special cases, the neural network testing-policy achieves the same probability of success as the optimal collective measurement. 
    more » « less
  5. A<sc>bstract</sc> The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in generic isolated quantum systems and is formulated in terms of the matrix elements of operators. An analog known as the ergodic bipartition (EB) describes entanglement and locality and is formulated in terms of the components of eigenstates. In this paper, we significantly generalize the EB and unify it with the ETH, extending the EB to study higher correlations and systems out of equilibrium. Our main result is a diagrammatic formalism that computes arbitrary correlations between eigenstates and operators based on a recently uncovered connection between the ETH and free probability theory. We refer to the connected components of our diagrams as generalized free cumulants. We apply our formalism in several ways. First, we focus on chaotic eigenstates and establish the so-called subsystem ETH and the Page curve as consequences of our construction. We also improve known calculations for thermal reduced density matrices and comment on an inherently free probabilistic aspect of the replica approach to entanglement entropy previously noticed in a calculation for the Page curve of an evaporating black hole. Next, we turn to chaotic quantum dynamics and demonstrate the ETH as a sufficient mechanism for thermalization, in general. In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times. We also demonstrate that the different phases of entanglement growth are encoded in higher correlations of the EB. Lastly, we examine the chaotic structure of eigenstates and operators together and reveal previously overlooked correlations between them. Crucially, these correlations encode butterfly velocities, a well-known dynamical property of interacting quantum systems. 
    more » « less