Abstract Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics.
more »
« less
Dynamics of High Molecular Weight Cylindrical and Lamellar Block Copolymers with X‐ray Photon Correlation Spectroscopy
Abstract The structure and dynamics of polystyrene (PS)‐b‐poly(ethylene oxide) block copolymers (BCPs) are studied. The BCPs exhibit microphase‐separated cylindrical and lamellar morphologies. Structural dynamics are measured with X‐ray photon correlation spectroscopy in the small‐angle regime. Morphologies and domain sizes are evaluated using small‐angle X‐ray scattering (SAXS), scanning electron microscopy, and atomic force microscopy. Different solvent processing conditions are investigated. Grain sizes evaluated using SAXS are found to depend on processing only for the rubbery majority BCP. The structural relaxation times are examined as a function of PS volume fraction, temperature, morphology, and structural sizes. Well above the glass transition temperature (Tg) of PS, all samples exhibit stretched autocorrelation decays and diffusive dynamics. NearTgof PS, the dynamics of all samples are anomalous with compressed autocorrelation decays and hyperdiffusive dynamics. This transition occurs at 153 °C or 1.13Tgof PS. In the diffusive regime (at high temperature), structural relaxation times are dependent on the processing method. Near PSTg(at low temperature), structural relaxation times scale with the PS volume fraction. Structural relaxation times do not correlate with grain size, indicating that the out‐of‐equilibrium state of PS dominates the structural dynamics of these strongly phase‐segregated BCPs.
more »
« less
- Award ID(s):
- 1751450
- PAR ID:
- 10493577
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Macromolecular Chemistry and Physics
- ISSN:
- 1022-1352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Debenedetti, P (Ed.)Using angle-resolved X-ray photoelectron spectroscopy, sum-frequency generation vibrational spectroscopy, contact angle measurements, and molecular dynamics simulations, we verify that the glass transition temperature (Tg) of polymer glass is lower near the free surface. However, the experimentalTg-gradients showed a linear variation with depth (z) from the free surface, while the simulated equilibriumTg-gradients exhibited a double exponentialz-dependence. In typical simulations,Tgis determined based on the relaxation time of the system reaching a prescribed threshold value at equilibrium. Conversely, the experiments determinedTgby observing the unfreezing of molecular mobility during heating from a kinetically arrested, nonequilibrium glassy state. To investigate the impact of nonequilibrium effects on theTg-gradient, we reduced the thermal annealing time in simulations, allowing the system to fall out of equilibrium. We observe a decrease in the relaxation time and the emergence of a modifiedz-dependence consistent with a linearTg-gradient near the free surface. We further validate the impact of nonequilibrium effects by studying the dependence of theTgon the heating/cooling rate for polymer films of varying thickness (h). Our experimental results reveal significant variations in theTg-heating/cooling rate dependence withhbelow the bulkTg, which are also observed in simulation when the simulated system is not equilibrated. We explain our findings by the reduction in mass density within the inner region of the system under nonequilibrium conditions, as observed in simulation, and recent research indicating a decrease in the localTgof a polymer when placed next to a softer material.more » « less
-
Abstract The processing–structure–property relationship using poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET) is explored. Specifically, both pre‐extension and preshear of amorphous PLA and PET above their glass transition temperaturesTg, carried out in the affine deformation limit, can induce a specific type of cold crystallization during annealing, i.e., nanoconfined crystallization (NCC) where crystal sizes are limited to a nanoscopic scale in all dimensions so as to render the processed PLA and PET optically transparent. The new polymer structure after premelt deformation can show considerably enhanced mechanical properties. For example, premelt stretching produces geometric condensation of the chain network. This structural alternation can profoundly change the mechanical characteristics, e.g., turning brittle PLA ductile. In contrast, after preshear of amorphous PLA aboveTg, the NCC containing PLA remains brittle, showing the importance to have geometric condensation from processing. Both AFM imaging and SAXS measurements are performed to verify that premelt deformation of PLA and PET indeed results in NCC from annealing that permits the strain‐induced cold crystallization to take place on the length scale of the mesh size of the deformed chain network.more » « less
-
Abstract Rubber toughening of glassy polystyrene (PS) has been manufactured commercially for decades as high impact polystyrene, where rubbery poly‐butadiene (PB) inclusions are added to modify the PS matrix response to deformation and impact. In this study, measurements of the local glass transition temperatureTg(z) of PS next to PB rubber are presented, expanding the previous data to a polymer with a much lowerTgvalue (PBTgbulk= −96 °C). After accounting for a small molecule additive present in the commercial PB sample that would otherwise migrate over to the PS domain causing plasticization, it is found that theTg(z) profile in PS next to PB is consistent with previous results. It is also demonstrated that these broad and asymmetric experimentally observedTg(z) profiles are not caused by the migration of low molecular weight chains across the interface by comparing samples made with two different poly(n‐butyl methacrylate) molecular weights.more » « less
-
Abstract The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higherTg. In this work, theTgs for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backboneTgfrom 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand theTgdependence on side chain cleavage. X‐ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancingTgand conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices.more » « less
An official website of the United States government

