skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting Tropical Cyclone Formation with Deep Learning
Abstract Exploring new techniques to improve the prediction of tropical cyclone (TC) formation is essential for operational practice. Using convolutional neural networks, this study shows that deep learning can provide a promising capability for predicting TC formation from a given set of large-scale environments at certain forecast lead times. Specifically, two common deep-learning architectures including the residual net (ResNet) and UNet are used to examine TC formation in the Pacific Ocean. With a set of large-scale environments extracted from the NCEP–NCAR reanalysis during 2008–21 as input and the TC labels obtained from the best track data, we show that both ResNet and UNet reach their maximum forecast skill at the 12–18-h forecast lead time. Moreover, both architectures perform best when using a large domain covering most of the Pacific Ocean for input data, as compared to a smaller subdomain in the western Pacific. Given its ability to provide additional information about TC formation location, UNet performs generally worse than ResNet across the accuracy metrics. The deep learning approach in this study presents an alternative way to predict TC formation beyond the traditional vortex-tracking methods in the current numerical weather prediction. Significance StatementThis study presents a new approach for predicting tropical cyclone (TC) formation based on deep learning (DL). Using two common DL architectures in visualization research and a set of large-scale environments in the Pacific Ocean extracted from the reanalysis data, we show that DL has an optimal capability of predicting TC formation at the 12–18-h lead time. Examining the DL performance for different domain sizes shows that the use of a large domain size for input data can help capture some far-field information needed for predicting TCG. The DL approach in this study demonstrates an alternative way to predict or detect TC formation beyond the traditional vortex-tracking methods used in the current numerical weather prediction.  more » « less
Award ID(s):
2309929
PAR ID:
10493580
Author(s) / Creator(s):
;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Weather and Forecasting
Volume:
39
Issue:
1
ISSN:
0882-8156
Page Range / eLocation ID:
241 to 258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of deep learning (DL) weather forecasting models has made rapid progress and achieved comparable or better skill than traditional Numerical Weather prediction (NWP) models, which are generally computationally intensive. However, applications of these DL models have yet to be fully explored, including for severe convective events. We evaluate the DL model Pangu‐Weather in forecasting tornadic environments with one‐day lead times using convective available potential energy (CAPE), 0–6 bulk wind difference (BWD6), and 0–3 km storm‐relative helicity (SRH3). We also compare its performance to the National Centers for Environmental Prediction (NCEP)'s Global Forecast System (GFS), a traditional NWP model. Pangu‐Weather generally outperforms GFS in predicting BWD6 and SRH3 at the closest grid point and hour of the storm report. However, Pangu‐Weather tends to underpredict the maximum values of all convective parameters in the 1–2 hr before the storm across the surrounding grid points compared to the GFS. 
    more » « less
  2. Abstract Applications of machine learning (ML) in atmospheric science have been rapidly growing. To facilitate the development of ML models for tropical cyclone (TC) research, this binary dataset contains a specific customization of the National Center for Environmental Prediction (NCEP)/final analysis (FNL) data, in which key environmental conditions relevant to TC formation are extracted for a range of lead times (0–72 hours) during 1999–2023. The dataset is designed as multi-channel images centered on TC formation locations, with a positive and negative directory structure that can be readily read from any ML applications or common data interface. With its standard structure, this dataset provides users with a unique opportunity to conduct ML application research on TC formation as well as related predictability at different forecast lead times. 
    more » « less
  3. Rapid Intensification (RI) in Tropical Cyclone (TC) development is one of the most difficult and still challenging tasks in weather forecasting. In addition to the dynamical numerical simulations, commonly used techniques for RI (as well as TC intensity changes) analysis and prediction are the composite analysis and statistical models based on features derived from the composite analysis. Quite a large number of such selected and pre-determined features related to TC intensity change and RI have been accumulated by the domain scientists, such as those in the widely used SHIPS (Statistical Hurricane Intensity Prediction Scheme) database. Moreover, new features are still being added with new algorithms and/or newly available datasets. However, there are very few unified frameworks for systematically distilling features from a comprehensive data source. One such unified Artificial Intelligence (AI) system was developed for deriving features from TC centers, and here, we expand that system to large-scale environmental condition. In this study, we implemented a deep learning algorithm, the Convolutional Neural Network (CNN), to the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data and identified and refined potentially new features relevant to RI such as specific humidity in east or northeast, vorticity and horizontal wind in north and south relative to the TC centers, as well as ozone at high altitudes that could help the prediction and understanding of the occurrence of RI based on the deep learning network (named TCNET in this study). By combining the newly derived features and the features from the SHIPS database, the RI prediction performance can be improved by 43%, 23%, and 30% in terms of Kappa, probability of detection (POD), and false alarm rate (FAR) against the same modern classification model but with the SHIPS inputs only. 
    more » « less
  4. Abstract It is widely agreed that subseasonal-to-seasonal (S2S) predictability arises from the atmospheric initial state during early lead times and from the land and ocean during long lead times. We test this hypothesis for the large-scale mid-latitude atmosphere by training numerous XGBoost models to predict weather regimes (WRs) over North America at 1-to-8-week lead times. Each model uses a different predictor from one Earth system component (atmosphere, ocean, or land) sourced from reanalysis. According to the models, the atmosphere provides more predictability during the first two forecast weeks, and the three components performed similarly afterward. However, the skill and sources of predictability are highly dependent on the season and target WR. Our results show greater WR predictability in fall and winter, particularly for the Pacific Trough and Pacific Ridge regimes, driven primarily by the ocean (e.g., El Niño-Southern Oscillation and sea ice). For the Pacific Ridge in winter, the stratosphere also contributes significantly to predictability across most S2S lead times. Additionally, the initial large-scale tropospheric structure (encompassing the tropics and extra-tropics, e.g., Madden-Julian Oscillation) and soil conditions play a relevant role—most notably for the Greenland High regime in winter. This study highlights previously identified sources of predictability for the large-scale atmosphere and gives insight into new sources for future study. Given how closely linked WRs are to surface precipitation and temperature anomalies, storm tracks, and extreme events, the study results contribute to improving S2S prediction of surface weather. 
    more » « less
  5. Abstract Previous studies have investigated how the environmental vertical wind shear (VWS) may trigger the asymmetric structure in an initially axisymmetric tropical cyclone (TC) vortex and how TC intensity changes in response. In this study, the possible effect of the initial vortex asymmetric structure on the TC intensity change in response to an imposed environmental VWS is investigated based on idealized full‐physics model simulations. Results show that the effect of the asymmetric structure in the initial TC vortex can either enhance or suppress the initial weakening of the TC in response to the imposed environmental VWS. When the initial asymmetric structure is in phase of the VWS‐induced asymmetric structure, the TC weakening will be enhanced and vice versa. Our finding calls for realistic representation of initial TC asymmetric structure in numerical weather prediction models and observations to better resolve the asymmetric structure in TCs. 
    more » « less