This project, titled Collective Argumentation Learning and Coding (CALC), is based on our belief that if teachers had an instructional approach that allowed them to teach coding alongside mathematics and science in integrated ways, then coding would become a mainstream subject taught in the elementary school curriculum. However, few practicing elementary school teachers have the academic backgrounds that allow them to teach coding in a manner that goes beyond allowing students to learn how to code through trial-and-error experimentation and as an additive learning activity such as an after-school program. Teachers at our partnering school district have completed the first design of a prototype CALC course, where they used collective argumentation to learn how to code educational robotics. Overall, the implementation of the CALC approach demonstrates the growth of the teachers in their ability to teach coding as a reasoning process and as a mean to integrate it into everyday classroom activities.
more »
« less
Quantum education: how to teach a subject that nobody fully understands
Quantum technologies are expected to be among the most transformational technologies of the twenty-first century, changing how we sense the world around us, approach security, and process critical information. Transitioning the industry from quantum research labs to the commercial environment requires a sizable workforce skilled in supporting Quantum 2.0. To achieve the goal of the entire quantum ecosystem, society at all levels needs to be aware of this emerging field and then be inspired, attracted, educated, and trained with the new quantum skills and competencies. This poses a challenge as quantum science is a difficult and counterintuitive subject. How is a subject such as quantum mechanics that, as the famous quantum scientist Richard Feynman once said, “nobody fully understands” to be taught? In this presentation, we will share our experiences and results of EdQuantum, an NSF-funded project whose goal is to develop a curriculum to train future quantum technicians. The proposed curriculum intends to provide an essential first step in quantum education at the associate’s level. The curriculum relies heavily on a visual, hands-on approach that is based on commercially available quantum educational hardware. The curriculum strives to bring complex quantum science to a level understandable to individuals without a solid scientific background through algebra-based theory and simple experiments. As such, it may also be used to raise awareness and inspire high school students to seek careers as future quantum scientists.
more »
« less
- Award ID(s):
- 2055061
- PAR ID:
- 10493596
- Editor(s):
- Hagan, David J.; McKee, Michael
- Publisher / Repository:
- SPIE
- Date Published:
- Journal Name:
- Proc. SPIE 12723, Seventeenth Conference on Education and Training in Optics and Photonics: ETOP 2023, 1272331
- ISBN:
- 9781510666719
- Page Range / eLocation ID:
- 56
- Subject(s) / Keyword(s):
- quantum education, quantum workforce, quantum experiments, quantum hardware, high schools
- Format(s):
- Medium: X
- Location:
- Cocoa Beach, United States
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This project, titled Collective Argumentation Learning and Coding (CALC), is based on our belief that if teachers had an instructional approach that allowed them to teach coding alongside mathematics and science in integrated ways, then coding would become a mainstream subject taught in the elementary school curriculum. However, few practicing elementary school teachers have the academic backgrounds that allow them to teach coding in a manner that goes beyond allowing students to learn how to code through trial-and-error experimentation and as an additive learning activity such as an after-school program. Teachers at our partnering school district have completed the first design of a prototype CALC course, where they used collective argumentation to learn how to code educational robotics. Overall, the implementation of the CALC approach demonstrates the growth of the teachers in their ability to teach coding as a reasoning process and as a mean to integrate it into everyday classroom activities.more » « less
-
This project, titled Collective Argumentation Learning and Coding (CALC), is based on our belief that if teachers had an instructional approach that allowed them to teach coding alongside mathematics and science in integrated ways, then coding would become a mainstream subject taught in the elementary school curriculum. However, few practicing elementary school teachers have the academic backgrounds that allow them to teach coding in a manner that goes beyond allowing students to learn how to code through trial-and-error experimentation and as an additive learning activity such as an after-school program. Current content and practice standards call for the use of argumentation in the teaching of mathematics and science. This project is focused on extending the collective argumentation framework for the teaching of mathematics to the teaching of coding. Teachers at our partnering school district have completed the first design of a prototype CALC course where they used collective argumentation to learn how to code educational robotics. At the end of this course, the teachers developed lesson plans that were implemented in grades 3, 4 and 5.This paper and conference presentation focused on the research question, how do elementary school teachers use the CALC approach to support their students’ learning of coding, mathematics, and science content and practices? Overall, the implementation of the CALC approach demonstrated the growth of the teachers in their ability to teach coding as a reasoning process and as a means to integrate it into everyday classroom activities.more » « less
-
While students are often passionate about their chosen fields, they often have limited awareness of the profound impact of AI technologies on their professions. In order to advance efforts in building subject-relevant AI literacy among undergraduate students studying Computer Science and non-Computer Science (Criminal Justice and Forensic Science) it is imperative to engage in rigorous efforts to develop and study curricular infusion of Artificial Intelligence topics. Using a Design-Based Research model, the project team and the external evaluators studied the first iteration of the module development and implementation. Using data collected through surveys, focus groups, critical review, and reflection exercises the external evaluation team produced findings that informed the project team in revising and improving their materials and approach for the second iteration. These efforts can help educators and the AI module developers tailor their AI curriculum to address these specific areas, ensuring that students develop a more accurate understanding of applications of AI in their future career field.more » « less
-
null (Ed.)The increased push for access to computer science (CS) at the K-12 level has been argued as a way to broaden participation in computing. At the elementary level, computational thinking (CT) has been used as a framework for bringing CS ideas into the classroom and educating teachers about how they can integrate CT into their daily instruction. A number of these projects have made equity a central goal of their work by working in schools with diverse racial, linguistic, and economic diversity. However, we know little about whether and how teachers equitably engage students in CT during their classroom instruction– particularly during science and math lessons. In this paper, we present an approach to analyzing classroom instructional videos using the EQUIP tool (https://www.equip.ninja/). The purpose of this tool is to examine the quantity and quality of students’ contributions during CT-integrated math and science lessons and how it differs based on demographic markers. We highlight this approach using classroom video observation from four teachers and discuss future work in this area.more » « less
An official website of the United States government

