Machine unlearning (MU) aims to remove the influence of specific data points from trained models, enhancing compliance with privacy regulations. However, the vulnerability of basic MU models to malicious unlearning requests in adversarial learning environments has been largely overlooked. Existing adversarial MU attacks suffer from three key limitations: inflexibility due to pre-defined attack targets, inefficiency in handling multiple attack requests, and instability caused by non-convex loss functions. To address these challenges, we propose a Flexible, Efficient, and Stable Attack (DDPA). First, leveraging Carathéodory's theorem, we introduce a convex polyhedral approximation to identify points in the loss landscape where convexity approximately holds, ensuring stable attack performance. Second, inspired by simplex theory and John's theorem, we develop a regular simplex detection technique that maximizes coverage over the parameter space, improving attack flexibility and efficiency. We theoretically derive the proportion of the effective parameter space occupied by the constructed simplex. We evaluate the attack success rate of our DDPA method on real datasets against state-of-the-art machine unlearning attack methods. Our source code is available at https://github.com/zzz0134/DDPA.
more »
« less
Model Sparsity Can Simplify Machine Unlearning
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process to remove the influence of specific examples from a given model. Although exact unlearning can be achieved through complete model retraining using the remaining dataset, the associated computational costs have driven the development of efficient, approximate unlearning techniques. Moving beyond data-centric MU approaches, our study introduces a novel model-based perspective: model sparsification via weight pruning, which is capable of reducing the gap between exact unlearning and approximate unlearning. We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. This leads to a new MU paradigm, termed prune first, then unlearn, which infuses a sparse model prior into the unlearning process. Building on this insight, we also develop a sparsity-aware unlearning method that utilizes sparsity regularization to enhance the training process of approximate unlearning. Extensive experiments show that our proposals consistently benefit MU in various unlearning scenarios. A notable highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest unlearning methods) when using sparsity-aware unlearning. Furthermore, we demonstrate the practical impact of our proposed MU methods in addressing other machine learning challenges, such as defending against backdoor attacks and enhancing transfer learning. Codes are available at this https URL.
more »
« less
- Award ID(s):
- 2143895
- PAR ID:
- 10493651
- Publisher / Repository:
- NeurIPS 2023
- Date Published:
- Journal Name:
- The Thirty-eighth Annual Conference on Neural Information Processing Systems
- Format(s):
- Medium: X
- Location:
- New Orleans
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Machine unlearning (MU) aims to remove the influence of specific data points from trained models, enhancing compliance with privacy regulations. However, the vulnerability of basic MU models to malicious unlearning requests in adversarial learning environments has been largely overlooked. Existing adversarial MU attacks suffer from three key limitations: inflexibility due to pre-defined attack targets, inefficiency in handling multiple attack requests, and instability caused by non-convex loss functions. To address these challenges, we propose a Flexible, Efficient, and Stable Attack (DDPA). First, leveraging Carathéodory's theorem, we introduce a convex polyhedral approximation to identify points in the loss landscape where convexity approximately holds, ensuring stable attack performance. Second, inspired by simplex theory and John's theorem, we develop a regular simplex detection technique that maximizes coverage over the parameter space, improving attack flexibility and efficiency. We theoretically derive the proportion of the effective parameter space occupied by the constructed simplex. We evaluate the attack success rate of our DDPA method on real datasets against state-of-the-art machine unlearning attack methods. Our source code is available at https://github.com/zzz0134/DDPA.more » « less
-
Given the availability of abundant data, deep learning models have been advanced and become ubiquitous in the past decade. In practice, due to many different reasons (e.g., privacy, usability, and fidelity), individuals also want the trained deep models to forget some specific data. Motivated by this, machine unlearning (also known as selective data forgetting) has been intensively studied, which aims at removing the influence that any particular training sample had on the trained model during the unlearning process. However, people usually employ machine unlearning methods as trusted basic tools and rarely have any doubt about their reliability. In fact, the increasingly critical role of machine unlearning makes deep learning models susceptible to the risk of being maliciously attacked. To well understand the performance of deep learning models in malicious environments, we believe that it is critical to study the robustness of deep learning models to malicious unlearning attacks, which happen during the unlearning process. To bridge this gap, in this paper, we first demonstrate that malicious unlearning attacks pose immense threats to the security of deep learning systems. Specifically, we present a broad class of malicious unlearning attacks wherein maliciously crafted unlearning requests trigger deep learning models to misbehave on target samples in a highly controllable and predictable manner. In addition, to improve the robustness of deep learning models, we also present a general defense mechanism, which aims to identify and unlearn effective malicious unlearning requests based on their gradient influence on the unlearned models. Further, theoretical analyses are conducted to analyze the proposed methods. Extensive experiments on real-world datasets validate the vulnerabilities of deep learning models to malicious unlearning attacks and the effectiveness of the introduced defense mechanism.more » « less
-
As privacy concerns escalate in the realm of machine learning, data owners now have the option to utilize machine unlearning to remove their data from machine learning models, following recent legislation. To enhance transparency in machine unlearning and avoid potential dishonesty by model providers, various verification strategies have been proposed. These strategies enable data owners to ascertain whether their target data has been effectively unlearned from the model. However, our understanding of the safety issues of machine unlearning verification remains nascent. In this paper, we explore the novel research question of whether model providers can circumvent verification strategies while retaining the information of data supposedly unlearned. Our investigation leads to a pessimistic answer: \textit{the verification of machine unlearning is fragile}. Specifically, we categorize the current verification strategies regarding potential dishonesty among model providers into two types. Subsequently, we introduce two novel adversarial unlearning processes capable of circumventing both types. We validate the efficacy of our methods through theoretical analysis and empirical experiments using real-world datasets. This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.more » « less
-
In the field of machine unlearning, certified unlearning has been extensively studied in convex machine learning models due to its high efficiency and strong theoretical guarantees. However, its application to deep neural networks (DNNs), known for their highly nonconvex nature, still poses challenges. To bridge the gap between certified unlearning and DNNs, we propose several simple techniques to extend certified unlearning methods to nonconvex objectives. To reduce the time complexity, we develop an efficient computation method by inverse Hessian approximation without compromising certification guarantees. In addition, we extend our discussion of certification to nonconvergence training and sequential unlearning, considering that real-world users can send unlearning requests at different time points. Extensive experiments on three real-world datasets demonstrate the efficacy of our method and the advantages of certified unlearning in DNNs.more » « less
An official website of the United States government

