skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Verification of Machine Unlearning is Fragile
As privacy concerns escalate in the realm of machine learning, data owners now have the option to utilize machine unlearning to remove their data from machine learning models, following recent legislation. To enhance transparency in machine unlearning and avoid potential dishonesty by model providers, various verification strategies have been proposed. These strategies enable data owners to ascertain whether their target data has been effectively unlearned from the model. However, our understanding of the safety issues of machine unlearning verification remains nascent. In this paper, we explore the novel research question of whether model providers can circumvent verification strategies while retaining the information of data supposedly unlearned. Our investigation leads to a pessimistic answer: \textit{the verification of machine unlearning is fragile}. Specifically, we categorize the current verification strategies regarding potential dishonesty among model providers into two types. Subsequently, we introduce two novel adversarial unlearning processes capable of circumventing both types. We validate the efficacy of our methods through theoretical analysis and empirical experiments using real-world datasets. This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.  more » « less
Award ID(s):
2223769 2228534 2154962 2144209 2006844
PAR ID:
10538548
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
2024 International Conference on Machine Learning
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given the availability of abundant data, deep learning models have been advanced and become ubiquitous in the past decade. In practice, due to many different reasons (e.g., privacy, usability, and fidelity), individuals also want the trained deep models to forget some specific data. Motivated by this, machine unlearning (also known as selective data forgetting) has been intensively studied, which aims at removing the influence that any particular training sample had on the trained model during the unlearning process. However, people usually employ machine unlearning methods as trusted basic tools and rarely have any doubt about their reliability. In fact, the increasingly critical role of machine unlearning makes deep learning models susceptible to the risk of being maliciously attacked. To well understand the performance of deep learning models in malicious environments, we believe that it is critical to study the robustness of deep learning models to malicious unlearning attacks, which happen during the unlearning process. To bridge this gap, in this paper, we first demonstrate that malicious unlearning attacks pose immense threats to the security of deep learning systems. Specifically, we present a broad class of malicious unlearning attacks wherein maliciously crafted unlearning requests trigger deep learning models to misbehave on target samples in a highly controllable and predictable manner. In addition, to improve the robustness of deep learning models, we also present a general defense mechanism, which aims to identify and unlearn effective malicious unlearning requests based on their gradient influence on the unlearned models. Further, theoretical analyses are conducted to analyze the proposed methods. Extensive experiments on real-world datasets validate the vulnerabilities of deep learning models to malicious unlearning attacks and the effectiveness of the introduced defense mechanism. 
    more » « less
  2. The ability to make targeted updates to models, whether for unlearning, debiasing, model editing, or safety alignment, is central to AI safety. While these interventions aim to modify specific knowledge (e.g., removing virology content), their effects often propagate to related but unintended areas (e.g., allergies). Due to lack of standardized tools, existing evaluations typically compare performance on targeted versus unrelated general tasks, overlooking this broader collateral impact called the "ripple effect". We introduce RippleBench, a benchmark for systematically measuring how interventions affect semantically related knowledge. Using RippleBench, built on top of a Wikipedia-RAG pipeline for generating multiple-choice questions, we evaluate eight state-of-the-art unlearning methods. We find that all methods exhibit non-trivial accuracy drops on topics increasingly distant from the unlearned knowledge, each with distinct propagation profiles. We release our codebase for on-the-fly ripple evaluation as well as RippleBench-WMDP-Bio, a dataset derived from WMDP biology, containing 9,888 unique topics and 49,247 questions. 
    more » « less
  3. Large language models (LLMs) have advanced to encompass extensive knowledge across diverse domains. Yet controlling what a large language model should not know is important for ensuring alignment and thus safe use. However, accurately and efficiently unlearning knowledge from an LLM remains challenging due to the potential collateral damage caused by the fuzzy boundary between retention and forgetting, and the large computational requirements for optimization across state-of-the-art models with hundreds of billions of parameters. In this work, we present \textbf{Embedding-COrrupted (ECO) Prompts}, a lightweight unlearning framework for large language models to address both the challenges of knowledge entanglement and unlearning efficiency. Instead of relying on the LLM itself to unlearn, we enforce an unlearned state during inference by employing a prompt classifier to identify and safeguard prompts to forget. We learn corruptions added to prompt embeddings via zeroth order optimization toward the unlearning objective offline and corrupt prompts flagged by the classifier during inference. We find that these embedding-corrupted prompts not only lead to desirable outputs that satisfy the unlearning objective but also closely approximate the output from a model that has never been trained on the data intended for forgetting. Through extensive experiments on unlearning, we demonstrate the superiority of our method in achieving promising unlearning at \textit{nearly zero side effects} in general domains and domains closely related to the unlearned ones. Additionally, we highlight the scalability of our method to 100 LLMs, ranging from 0.5B to 236B parameters, incurring no additional cost as the number of parameters increases. We have made our code publicly available at \url{this https URL}. 
    more » « less
  4. Abstract Machine unlearning is a cutting‐edge technology that embodies the privacy legal principle of the right to be forgotten within the realm of machine learning (ML). It aims to remove specific data or knowledge from trained models without retraining from scratch and has gained significant attention in the field of artificial intelligence in recent years. However, the development of machine unlearning research is associated with inherent vulnerabilities and threats, posing significant challenges for researchers and practitioners. In this article, we provide the first comprehensive survey of security and privacy issues associated with machine unlearning by providing a systematic classification across different levels and criteria. Specifically, we begin by investigating unlearning‐based security attacks, where adversaries exploit vulnerabilities in the unlearning process to compromise the security of machine learning (ML) models. We then conduct a thorough examination of privacy risks associated with the adoption of machine unlearning. Additionally, we explore existing countermeasures and mitigation strategies designed to protect models from malicious unlearning‐based attacks targeting both security and privacy. Further, we provide a detailed comparison between machine unlearning‐based security and privacy attacks and traditional malicious attacks. Finally, we discuss promising future research directions for security and privacy issues posed by machine unlearning, offering insights into potential solutions and advancements in this evolving field. 
    more » « less
  5. In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process to remove the influence of specific examples from a given model. Although exact unlearning can be achieved through complete model retraining using the remaining dataset, the associated computational costs have driven the development of efficient, approximate unlearning techniques. Moving beyond data-centric MU approaches, our study introduces a novel model-based perspective: model sparsification via weight pruning, which is capable of reducing the gap between exact unlearning and approximate unlearning. We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. This leads to a new MU paradigm, termed prune first, then unlearn, which infuses a sparse model prior into the unlearning process. Building on this insight, we also develop a sparsity-aware unlearning method that utilizes sparsity regularization to enhance the training process of approximate unlearning. Extensive experiments show that our proposals consistently benefit MU in various unlearning scenarios. A notable highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest unlearning methods) when using sparsity-aware unlearning. Furthermore, we demonstrate the practical impact of our proposed MU methods in addressing other machine learning challenges, such as defending against backdoor attacks and enhancing transfer learning. Codes are available at this https URL. 
    more » « less