skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A eudicot MIXTA family ancestor likely functioned in both conical cells and trichomes
TheMIXTAfamily of MYB transcription factors modulate the development of diverse epidermal features in land plants. This study investigates the evolutionary history and function of theMIXTAgene family in the early-diverging eudicot model lineageThalictrum(Ranunculaceae), with R2R3 SBG9-A MYB transcription factors representative of the pre-core eudicot duplication and thus hereby referred to as “paleoMIXTA” (PMX). Cloning and phylogenetic analysis ofThalictrum paleoMIXTA(ThPMX) orthologs across 23 species reveal a genus-wide duplication coincident with a whole-genome duplication. Expression analysis by qPCR confirmed that the highest expression is found in carpels, while newly revealing high expression in leaves and nuanced differences between paralogs in representative polyploid species. The single-copy ortholog from the diploid speciesT. thalictroides(TthPMX, previouslyTtMYBML2), which has petaloid sepals with conical–papillate cells and trichomes on leaves, was functionally characterized by virus-induced gene silencing (VIGS), and its role in leaves was also assessed from heterologous overexpression in tobacco. Another ortholog from a species with conical–papillate cells on stamen filaments,TclPMX, was also targeted for silencing. Overexpression assays in tobacco provide further evidence that thepaleoMIXTAlineage has the potential for leaf trichome function in a core eudicot. Transcriptome analysis by RNA-Seq on leaves of VIGS-treated plants suggests thatTthPMXmodulates leaf trichome development and morphogenesis through microtubule-associated mechanisms and that this may be a conserved pathway for eudicots. These experiments provide evidence for a combined role forpaleoMIXTAorthologs in (leaf) trichomes and (floral) conical–papillate cells that, together with data from other systems, makes the functional reconstruction of a eudicot ancestor most likely as also having a combined function.  more » « less
Award ID(s):
1911539
PAR ID:
10493839
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
14
ISSN:
1664-462X
Subject(s) / Keyword(s):
epidermis MIXTA family non-core eudicots polyploidy trichomes conical cells ranunculid R2R3 MYB
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott–Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis. 
    more » « less
  2. Abstract BackgroundSoybean gene functions cannot be easily interrogated through transgenic disruption (knock-out) of genes-of-interest, or transgenic overexpression of proteins-of-interest, because soybean transformation is time-consuming and technically challenging. An attractive alternative is to administer transient gene silencing or overexpression with a plant virus-based vector. However, existing virus-induced gene silencing (VIGS) and/or overexpression vectors suitable for soybean have various drawbacks that hinder their widespread adoption. ResultsWe describe the development of a new vector based on cowpea severe mosaic virus (CPSMV), a plus-strand RNA virus with its genome divided into two RNA segments, RNA1 and RNA2. This vector, designated FZ, incorporates a cloning site in the RNA2 cDNA, permitting insertion of nonviral sequences. When paired with an optimized RNA1 construct, FZ readily infects bothNicotiana benthamianaand soybean. As a result, FZ constructs destined for soybean can be first delivered toN. benthamianain order to propagate the modified viruses to high titers. FZ-based silencing constructs induced robust silencing of phytoene desaturase genes inN. benthamiana, multiple soybean accessions, and cowpea. Meanwhile, FZ supported systemic expression of fluorescent proteins mNeonGreen and mCherry inN. benthamianaand soybean. Finally, FZ-mediated expression of the Arabidopsis transcription factor MYB75 causedN. benthamianato bear brown leaves and purple, twisted flowers, indicating that MYB75 retained the function of activating anthocyanin synthesis pathways in a different plant. ConclusionsThe new CPSMV-derived FZ vector provides a convenient and versatile soybean functional genomics tool that is expected to accelerate the characterization of soybean genes controlling crucial productivity traits. 
    more » « less
  3. Abstract Nectar guide trichomes play crucial ecological roles in bee-pollinated flowers, as they serve as footholds and guides for foraging bees to access the floral rewards. However, the genetic basis of natural variation in nectar guide trichomes among species remains poorly understood. In this study, we performed genetic analysis of nectar guide trichome variation between two closely related monkeyflower (Mimulus) species, the bumblebee-pollinatedMimulus lewisiiand self-pollinatedM. parishii. We demonstrate that aMIXTA-likeR2R3-MYBgene,GUIDELESS, is a major contributor to the nectar guide trichome length variation between the two species. The short-hairedM. parishiicarries a recessive allele due to non-synonymous substitutions in a highly conserved motif among MIXTA-like MYB proteins. Furthermore, our results suggest that besidesGUIDELESS, additional loci encoding repressors of trichome elongation also contribute to the transition from bumblebee-pollination to selfing. Taken together, these results suggest that during a pollination syndrome switch, changes in seemingly complex traits such as nectar guide trichomes could have a relatively simple genetic basis, involving just a few genes of large effects. 
    more » « less
  4. Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis,SlASAT1-LIKE(SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence thatASAT1-Larose through duplication of its paralog,ASAT1, and was trichome-expressed before acquiring root-specific expression in theSolanumgenus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants. 
    more » « less
  5. Abstract The regulation of floral organ identity was investigated using a forward genetic approach in five floral homeotic mutants ofThalictrum, a noncore eudicot. We hypothesized that these mutants carry defects in the floral patterning genes. Mutant characterization comprised comparative floral morphology and organ identity gene expression at early and late developmental stages, followed by sequence analysis of coding and intronic regions to identify transcription factor binding sites and protein–protein interaction (PPI) motifs. Mutants exhibited altered expression of floral MADS‐box genes, which further informed the function of paralogs arising from gene duplications not found in reference model systems. The ensuing modified BCE models for the mutants supported instances of neofunctionalization (e.g., B‐class genes expressed ectopically in sepals), partial redundancy (E‐class), or subfunctionalization (C‐class) of paralogs. A lack of deleterious mutations in the coding regions of candidate floral MADS‐box genes suggested thatcis‐regulatory ortrans‐acting mutations are at play. Consistent with this hypothesis, double‐flower mutants had transposon insertions or showed signs of transposon activity in the regulatory intron ofAGAMOUS(AG) orthologs. Single amino acid substitutions were also found, yet they did not fall on any of the identified DNA binding or PPI motifs. In conclusion, we present evidence suggesting that transposon activity and regulatory mutations in floral homeotic genes likely underlie the striking phenotypes of theseThalictrumfloral homeotic mutants. 
    more » « less