skip to main content


This content will become publicly available on December 13, 2024

Title: PMsec 2.0: A Security-By-Design Solution for Doctor’s Dilemma Problem in Smart Healthcare
The rapid adoption of Internet-of-Medical-Things (IoMT) has revolutionized e-health systems, particularly in remote patient monitoring. With the growing adoption of Internet-of-Medical-Things (IoMT) in delivering technologically advanced health services, the security of Medtronic devices is pivotal as the security and privacy of data from these devices are directly related to patient safety. PUF has been the most widely adopted hardware security primitive which has been successfully integrated with various Internet-of-Things (IoT) based applications, particularly in smart healthcare for facilitating device security. To facilitate security and access control to IoMT devices, this work proposes a novel cybersecurity solution using PUF for facilitating global access to IoMT devices. The proposed framework presents an approach that enables the patient’s body area network devices supported by PUF to be securely accessible and controllable globally. The proposed cybersecurity solution has been experimentally validated using state-of-the-art SRAM PUF, a delay based PUF, and a trusted platform module (TPM) primitive.  more » « less
Award ID(s):
2101181
NSF-PAR ID:
10498627
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the OITS International Conference on Information Technology (OCIT)
Page Range / eLocation ID:
456 to 461
Subject(s) / Keyword(s):
["IOT"]
Format(s):
Medium: X
Location:
Raipur, India
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time. 
    more » « less
  2. Padhy, Sudarsan ; Oria, Vincent (Ed.)
    The simplicity, low cost, and scalability of Internet of Things (IoT) devices have led researchers to study their applications in a wide range of areas such as Healthcare, Transportation, and Agriculture. IoT devices help farmers to monitor the conditions in a field. These are connected to edge devices for real-time analysis. The edge servers send commands to actuators in the farm directly, without human intervention. At the same time, security vulnerabilities are a big concern, concomitant with the increasing utilization of IoT devices. If the duplication of an IoT device occurs and attackers gain access to the system, then the integrity of the entire ecosystem will be at stake, regardless of the application domain. This paper presents a Physical Unclonable Function (PUF) based hardware security primitive for the authentication of Internet of Agro-Things (IoAT) devices. The proposed security scheme has been prototyped with a testbed evaluation. An arbiter PUF module has been used for the validation of the proposed scheme. The PUF based security primitive is lightweight, scalable, and robust as it mainly depends on inherent manufacturing variations, thereby ensuring no chance for the duplication of IoT devices. 
    more » « less
  3. Fernanda Kastensmidt Ricardo Reis Aida Todri-Sanial Hai (Ed.)
    The scope of Smart electronics and its increasing market worldwide has made cybersecurity an important challenge. The Security-by-Design (SbD) principle, an emerging cybersecurity area, focuses on building security/privacy-enabled primitives at the design stage of an electronic system. This paper proposes a novel Physical Unclonable Function (PUF) based Trusted Platform Module (TPM) for SbD primitive. The proposed SbD primitive works by performing secure verification of the PUF key using TPM’s Encryption and Decryption engine. The securely verified PUF Key is then bound to TPM using Platform Configuration Registers (PCR). PCRs in TPM facilitate a secure boot process and effective access control to TPM’s NonVolatile memory through an enhanced authorization policy. By binding PUF with PCR in TPM, a novel PUF-based access control policy can be defined, bringing in a new security ecosystem for the emerging Internet-of-Everything era. The proposed SbD approach has been experimentally validated by successfully integrating various PUF topologies with Hardware TPM. 
    more » « less
  4. Internet of Things (IoT) devices are mostly small and operate wirelessly on limited battery supply, and therefore have stringent constraints on power consumption and hardware resources. Therefore, energy-efficient (low energy) design is paramount for the successful deployment of resource constrained IoT devices. Further, Physical Unclonable Functions (PUFs) have evolved as a popular hardware security primitive for low cost, mass produced IoT devices with very constrained resources. Energy harvesting technologies utilizing solar cells are being used in ultra-low power IoT devices to satisfy the energy requirement. In this paper, we utilize the intrinsic variations in solar cells to design a novel solar cell based PUF. As a proof of concept, we have used the Tiva TM4C123GH6PM microcontroller to build our solar cell based PUF. From our experiments, we found that the proposed solar cell based PUF has the uniformity value of 49.21% which is close to the ideal value of 50%. Further, the proposed solar cell based PUF has worst case reliabilities of 92.97% and 90.62% with variations in temperature and light intensity, respectively. 
    more » « less
  5. null (Ed.)
    The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. This has been especially highlighted by the explosive growth in the number of Internet of Things (IoT) devices. Unfortunately, the increasing prevalence of these devices has begun to draw the attention of malicious entities which exploit them for their own gain. What makes these devices especially attractive is the various resource constraints present in these devices that make it difficult to add standard security features. Therefore, one intriguing research direction is creating security solutions out of already present components such as sensors. Physically Unclonable Functions (PUFs) are one potential solution that use intrinsic variations of the device manufacturing process for provisioning security. In this work, we propose a novel weak PUF design using thermistor temperature sensors. Our design uses the differences in resistance variation between thermistors in response to temperature change. To generate a PUF that is reliable across a range of temperatures, we use a response-generation algorithm that helps mitigate the effects of temperature variation on the thermistors. We tested the performance of our proposed design across a range of environmental operating conditions. From this we were able to evaluate the reliability of the proposed PUF with respect to variations in temperature and humidity. We also evaluated the PUF’s uniqueness using Monte Carlo simulations. 
    more » « less