skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Language-guided Human Motion Synthesis with Atomic Actions
Language-guided human motion synthesis has been a challenging task due to the inherent complexity and diversity of human behaviors. Previous methods face limitations in generalization to novel actions, often resulting in unrealistic or incoherent motion sequences. In this paper, we propose ATOM (ATomic mOtion Modeling) to mitigate this problem, by decomposing actions into atomic actions, and employing a curriculum learning strategy to learn atomic action composition. First, we disentangle complex human motions into a set of atomic actions during learning, and then assemble novel actions using the learned atomic actions, which offers better adaptability to new actions. Moreover, we introduce a curriculum learning training strategy that leverages masked motion modeling with a gradual increase in the mask ratio, and thus facilitates atomic action assembly. This approach mitigates the overfitting problem commonly encountered in previous methods while enforcing the model to learn better motion representations. We demonstrate the effectiveness of ATOM through extensive experiments, including text-to-motion and action-to-motion synthesis tasks. We further illustrate its superiority in synthesizing plausible and coherent text-guided human motion sequences.  more » « less
Award ID(s):
2223507 2229873
PAR ID:
10493851
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM International Conference on Multimedia
Page Range / eLocation ID:
5262 to 5271
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning. The learning objective is achieved by providing signals to the latent encoding/embedding in VAE without changing its main backbone architecture, hence retaining the desirable properties of the VAE. We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE. In the unsupervised strategy, we guide the VAE learning by introducing a lightweight decoder that learns latent geometric transformation and principal components; in the supervised strategy, we use an adversarial excitation and inhibition mechanism to encourage the disentanglement of the latent variables. Guided-VAE enjoys its transparency and simplicity for the general representation learning task, as well as disentanglement learning. On a number of experiments for representation learning, improved synthesis/sampling, better disentanglement for classification, and reduced classification errors in meta learning have been observed. 
    more » « less
  2. Despite significant progress in video question answering (VideoQA), existing methods fall short of questions that require causal/temporal reasoning across frames. This can be attributed to imprecise motion representations. We introduce Action Temporality Modeling (ATM) for temporality reasoning via three-fold uniqueness: (1) rethinking the optical flow and realizing that optical flow is effective in capturing the long horizon temporality reasoning; (2) training the visual-text embedding by contrastive learning in an action-centric manner, leading to better action representations in both vision and text modalities; and (3) preventing the model from answering the question given the shuffled video in the fine-tuning stage, to avoid spurious correlation between appearance and motion and hence ensure faithful temporality reasoning. In the experiments, we show that ATM outperforms existing approaches in terms of the accuracy on multiple VideoQAs and exhibits better true temporality reasoning ability. 
    more » « less
  3. Prospection, the act of predicting the consequences of many possible futures, is intrinsic to human planning and action, and may even be at the root of consciousness. Surprisingly, this idea has been explored comparatively little in robotics. In this work, we propose a neural network architecture and associated planning algorithm that (1) learns a representation of the world useful for generating prospective futures after the application of high-level actions from a large pool of expert demonstrations, (2) uses this generative model to simulate the result of sequences of high-level actions in a variety of environments, and (3) uses this same representation to evaluate these actions and perform tree search to find a sequence of high-level actions in a new environment. Models are trained via imitation learning on a variety of domains, including navigation, pick-and-place, and a surgical robotics task. Our approach allows us to visualize intermediate motion goals and learn to plan complex activity from visual information. 
    more » « less
  4. Learning policies for contact-rich manipulation is a challenging problem due to the presence of multiple contact modes with different dynamics, which complicates state and action exploration. Contact-rich motion planning uses simplified dynamics to reduce the search space dimension, but the found plans are then difficult to execute under the true object-manipulator dynamics. This paper presents an algorithm for learning controllers based on guided policy search, where motion plans based on simplified dynamics define rewards and sampling distributions for policy gradient-based learning. We demonstrate that our guided policy search method improves the ability to learn manipulation controllers, through a task involving pushing a box over a step. 
    more » « less
  5. In this work, we present recEnergy, a recommender system for reducing energy consumption in commercial buildings with human-in-the-loop. We formulate the building energy optimization problem as a Markov Decision Process, show how deep reinforcement learning can be used to learn energy saving recommendations, and effectively engage occupants in energy-saving actions. is a recommender system that learns actions with high energy saving potential, actively distribute recommendations to occupants in a commercial building, and utilize feedback from the occupants to learn better energy saving recommendations. Over a four week user study, four different types of energy saving recommendations were trained and learned. improves building energy reduction from a baseline saving (passive-only strategy) of 19% to 26%. 
    more » « less