Abstract Atmospheric nitrogen (N) deposition and climate change are transforming the way N moves through dryland watersheds. For example, N deposition is increasing N export to streams, which may be exacerbated by changes in the magnitude, timing, and intensity of precipitation (i.e., the precipitation regime). While deposition can control the amount of N entering a watershed, the precipitation regime influences rates of internal cycling; when and where soil N, plant roots, and microbes are hydrologically coupled via diffusion; how quickly plants and microbes assimilate N; and rates of denitrification, runoff, and leaching. We used the ecohydrological model RHESSys to investigate (a) how N dynamics differ between N‐limited and N‐saturated conditions in a dryland watershed, and (b) how total precipitation and its intra‐annual intermittency (i.e., the time between storms in a year), interannual intermittency (i.e., the duration of dry months across multiple years), and interannual variability (i.e., variance in the amount of precipitation among years) modify N dynamics and export. Streamflow nitrate (NO3−) export was more sensitive to increasing rainfall intermittency (both intra‐annual and interannual) and variability in N‐limited than in N‐saturated model scenarios, particularly when total precipitation was lower—the opposite was true for denitrification which is more sensitive in N‐saturated than N‐limited scenarios. N export and denitrification increased or decreased more with increasing interannual intermittency than with other changes in precipitation amount. This suggests that under future climate change, prolonged droughts that are followed by more intense storms may pose a major threat to water quality in dryland watersheds.
more »
« less
Simulating the Role of Biogeochemical Hotspots in Driving Nitrogen Export From Dryland Watersheds
Abstract Climate change and nitrogen (N) pollution are altering biogeochemical and ecohydrological processes in dryland watersheds, increasing N export, and threatening water quality. While simulation models are useful for projecting how N export will change in the future, most models ignore biogeochemical “hotspots” that develop in drylands as moist microsites in the soil become hydrologically disconnected from plant roots when soils dry out. These hotspots enable N to accumulate over dry periods and rapidly flush to streams when soils wet up. To better project future N export, we developed a framework for representing hotspots using the ecohydrological model RHESSys. We then conducted a series of virtual experiments to understand how uncertainties in model structure and parameters influence N export to streams. Modeled N export was sensitive to three major factors (a) the abundance of hotspots in a watershed: N export increased linearly and then reached an asymptote with increasing hotspot abundance; this occurred because carbon and N inputs eventually became limiting as hotspots displaced vegetation cover, (b) the soil moisture threshold required for subsurface flow from hotspots to reestablish: peak streamflow N export increased and then decreased with an increasing threshold due to tradeoffs between N accumulation and export that occur with increasingly disconnected hotspots, and (c) the rate at which water diffused out of hotspots as soils dried down: N export was generally higher when the rate was slow because more N could accumulate in hotspots over dry periods, and then be flushed more rapidly to streams at the onset of rain. In a case study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export increased by 29%, enabling us to better capture the timing and magnitude of N losses observed in the field. N export further increased in response to interannual precipitation variability, particularly when multiple dry years were followed by a wet year. This modeling framework can improve projections of N export in watersheds where hotspots play an increasingly important role in water quality.
more »
« less
- PAR ID:
- 10493853
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 60
- Issue:
- 3
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The glacial meltwater streams in the McMurdo Dry Valleys (MDVs), Antarctica only flow during the austral summer and contain abundant algal mats which grow at the onset of flow. Their relative abundance in stream channels of this polar desert make the streams biogeochemical hot spots. The MDVs receive minimal precipitation as snow, which is redistributed by wind and deposited in distinct locations, some of which become persistent snow patches each year. Previous studies identified that MDV streamflow comes from a combination of glacier ice and snow, although snow was assumed to contribute little to the overall water budget. This study uses a combination of satellite imagery, terrain analysis, and field measurements to determine where snow patches accumulate and persist across MDV watersheds, and to quantify the potential hydrologic and biogeochemical contributions of snow patches to streams. Watersheds near the coast have the highest snow‐covered area and longest snow persistence. Many of these snow patches accumulate within the stream channels, which results in the potential to contribute to streamflow. During the summer of 2021–2022, stream channel snow patches had the potential to contribute anywhere between <1% and 90% of the total annual discharge in Lake Fryxell Basin streams, and may increase with different hydrometeorological conditions. On average the potential inputs from snow patches to streamflow was between 12% and 25% of the annual discharge during the 2021–2022 season, as determined by snow area and SWE. Snow patches in the majority of the watersheds had higher nitrogen and phosphorous concentrations than stream water, and six streams contained snow with higher N:P ratios than the average N:P in the stream water. This suggests that if such patches melt early in the summer, these nutrient and water inputs could occur at the right time and stoichiometry to be crucial for early season algal mat growth.more » « less
-
ABSTRACT Analysis of PRISM and SNOTEL station data paired with USGS streamflow gage data in the western United States shows that, in snow‐dominated mountainous watersheds, streamflow regimes differ between watersheds with karst geology and their non‐karst neighbours. These carbonate aquifers exhibit a spectrum of flow paths encompassing karst conduits, including large fractures or voids that transmit water readily to springs and other surface waters, and matrix flow paths through soils, highly fractured bedrock, or porous media bedrock grains. A well‐connected karst aquifer will discharge a large portion of its accumulated precipitation to surface water via springs and other groundwater flow paths on an annual scale, exhibiting a lagged response to precipitation presenting as a “memory effect” in hydrograph time series. These patterns were observed in the hydrologic records of gaged watersheds with exposed or near‐surface carbonate layers accounting for > 30% of their drainage area. In western snow‐dominated watersheds, where paired streamflow and SNOTEL data are available, analysis of the precipitation and flow time series shows low‐flow volume is strongly related to karst aquifer conditions and winter precipitation when compared to low‐flow volumes present in non‐karst watersheds, which have a complex relationship to multiple driving metrics. Analysis of normalised streamflow and cumulative precipitation in karst watersheds show that low‐flow conditions are highly dependent on the preceding winter precipitation and streamflow in both wet and dry periods. In non‐karst watersheds, increased precipitation primarily impacts high‐flow, spring runoff volumes with no clear relationship to low‐flow periods. When comparing cumulative streamflow and precipitation volumes within each water year and over longer timescales, karst watersheds show the potential filling and draining of large amounts of karst storage, whereas non‐karst watersheds demonstrate a more stable storage regime. Communities in many western US watersheds are dependent on snow‐dominated karst watersheds for their water supply. This analysis, using widely available hydrologic data, can provide insight into the recharge and storage processes within these watersheds, improve our ability to assess current flow regimes, anticipate the impacts of climate change on water availability, and help manage water supplies.more » « less
-
Abstract Understanding the dominant drivers of hydrological change is essential for water resources management. Watersheds in the United States are experiencing different types of changes (e.g., wet gets wetter and dry gets drier); however, few studies have analyzed what drivers are responsible for these changes, and how the dominant drivers vary over time and as a function of the climate/water regime and land cover. This study uses a time‐varying Budyko framework to quantify the relative importance of precipitation, potential evapotranspiration, and other factors (e.g., climate seasonality, agricultural drainage, and urbanization) in 889 watersheds in the contiguous United States from 1950 to 2009. Results show that watersheds that are getting wetter are primarily due to increases in precipitation. However, watersheds in dry climates that are getting drier are primarily due to other factors, while watersheds in wet climates that are getting drier are primarily due to precipitation. The drivers causing statistically significant streamflow trends vary depending on dominant land‐use types. Temporally, the increasing effects of other factors are more pronounced after the 1980s in the Midwest. The dominant drivers of streamflow in the United States are time‐varying instead of constant. This is consistent with non‐stationary patterns of streamflow. The time‐varying drivers provide information on the processes that are increasingly important and require the most attention in water resources management.more » « less
-
Abstract Tropical regions are experiencing high rates of forest cover loss coupled with changes in the volume and timing of rainfall. These shifts can compromise streamflow and water provision, highlighting the need to identify how forest cover influences streamflow generation under variable rainfall conditions. Although rainfall is the key driver of streamflow regimes, the role of forests is less clear, particularly in tropical regions where forest loss is an ongoing risk. Forest cover loss alters evapotranspiration, rainfall infiltration and storage, and may increase stream ecosystem vulnerability to rainfall extremes. Puerto Rico, an island with spatially heterogenous forest cover and a marked geographic rainfall gradient, is projected to experience more frequent droughts and flash flooding. Using 15‐min streamflow data collected between 2005 and 2016 from 20 US Geological Survey stream gages and 3‐hourly Multi‐Source Weighted‐Ensemble Precipitation rainfall estimates, we utilized flow‐duration curves and linear mixed regression models to examine the role of forest cover in regulating the timing and volume of streamflow. The mixed model approach helps to account for differences in watershed characteristics. We determined the effects of rainfall and forest cover on low and peak flows in Puerto Rican streams, then evaluated changes in these relationships under dry and wet antecedent rainfall conditions. Watersheds with high forest cover had consistently greater low and peak streamflow than deforested ones under all rainfall conditions, although the effect was more marked during wet antecedent conditions, suggesting that peak flow is largely the result of saturation excess overland flow. During dry antecedent rainfall conditions, highly forested watersheds had higher streamflow than deforested ones, suggesting greater hillslope storage and release may also be at play. Our results demonstrate that forest cover generated a net increase in hillslope infiltration and storage and may lessen drought impacts on streamflow in Puerto Rico. Resilience to prolonged drought may be limited by finite water storage potential in this steep, mountainous setting, highlighting maintenance of forest cover as an important water management strategy to increase infiltration.more » « less