Hypo-elastoplasticity is a framework suitable for modeling the mechanics of many hard materials that have small elastic deformation and large plastic deformation. In laboratory tests for these materials the Cauchy stress is often in quasi-static equilibrium. Rycroft et al. discovered a mathematical correspondence between this physical system and the incompressible Navier–Stokes equations, and developed a projection method similar to Chorin's projection method (1968) for incompressible Newtonian fluids. Here, we improve the original projection method to simulate quasi-static hypo-elastoplasticity, by making three improvements. First, drawing inspiration from the second-order projection method for incompressible Newtonian fluids, we formulate a second-order in time numerical scheme for quasi-static hypo-elastoplasticity. Second, we implement a finite element method for solving the elliptic equations in the projection step, which provides both numerical benefits and flexibility. Third, we develop an adaptive global time-stepping scheme, which can compute accurate solutions in fewer timesteps. Our numerical tests use an example physical model of a bulk metallic glass based on the shear transformation zone theory, but the numerical methods can be applied to any elastoplastic material.
more »
« less
A Generalized Constitutive Model for Versatile MPM Simulation and Inverse Learning with Differentiable Physics
We present a generalized constitutive model for versatile physics simulation of inviscid fluids, Newtonian viscosity, hyperelasticity, viscoplasticity, elastoplasticity, and other physical effects that arise due to a mixture of these behaviors. The key ideas behind our formulation are the design of a generalized Kirchhoff stress tensor that can describe hyperelasticity, Newtonian viscosity and inviscid fluids, and the use of pre-projection and post-correction rules for simulating material behaviors that involve plasticity, including elastoplasticity and viscoplasticity. We show how our generalized Kirchhoff stress tensor can be coupled together into a generalized constitutive model that allows the simulation of diverse material behaviors by only changing parameter values. We present several side-by-side comparisons with physics simulations for specific constitutive models to show that our generalized model produces visually similar results. More notably, our formulation allows for inverse learning of unknown material properties directly from data using differentiable physics simulations. We present several 3D simulations to highlight the robustness of our method, even with multiple different materials. To the best of our knowledge, our approach is the first to recover the knowledge of unknown material properties without making explicit assumptions about the data.
more »
« less
- PAR ID:
- 10493918
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Computer Graphics and Interactive Techniques
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2577-6193
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the initial value problem of a very general class of non-Newtonian compressible fluids in which the viscous stress tensor with shear and bulk viscosity relaxes to its Navier–Stokes values. These fluids correspond to the non-relativistic limit of well-known Israel–Stewart-like theories used in the relativistic fluid dynamic simulations of high-energy nuclear and astrophysical systems. After establishing the local well-posedness of the Cauchy problem, we show for the first time in the literature that there exists a large class of initial data for which the corresponding evolution breaks down in finite time due to the formation of singularities. This implies that a large class of non-Newtonian fluids do not have finite solutions defined at all times.more » « less
-
Mud is a suspension of fine-grained particles (sand, silt, and clay) in water. The interaction of clay minerals in mud gives rise to complex rheological behaviors, such as yield stress, thixotropy, and viscoelasticity. Here, we experimentally examine the flow behaviors of kaolinite clay suspensions, a model mud, using steady shear rheometry. The flow curves exhibit both yield stress and rheological hysteresis behaviors for various kaolinite volume fractions (ϕk). Further understanding of these behaviors requires fitting to existing constitutive models, which is challenging due to numerous fitting parameters. To this end, we employ a Bayesian inference method, Markov chain Monte Carlo, to fit the experimental flow curves to a microstructural viscoelastic model. The method allows us to estimate the rheological properties of the clay suspensions, such as viscosity, yield stress, and relaxation time scales. The comparison of the inherent relaxation time scales suggests that kaolinite clay suspensions are strongly viscoelastic and weakly thixotropic at relatively low ϕk, while being almost inelastic and purely thixotropic at high ϕk. Overall, our results provide a framework for predictive model fitting to elucidate the rheological behaviors of natural materials and other structured fluids.more » « less
-
Abstract Personalized computational simulations have emerged as a vital tool to understand the biomechanical factors of a disease, predict disease progression, and design personalized intervention. Material modeling is critical for realistic biomedical simulations, and poor model selection can have life-threatening consequences for the patient. However, selecting the best model requires a profound domain knowledge and is limited to a few highly specialized experts in the field. Here we explore the feasibility of eliminating user involvement and automate the process of material modeling in finite element analyses. We leverage recent developments in constitutive neural networks, machine learning, and artificial intelligence to discover the best constitutive model from thousands of possible combinations of a few functional building blocks. We integrate all discoverable models into the finite element workflow by creating a universal material subroutine that contains more than 60,000 models, made up of 16 individual terms. We prototype this workflow using biaxial extension tests from healthy human arteries as input and stress and stretch profiles across the human aortic arch as output. Our results suggest that constitutive neural networks can robustly discover various flavors of arterial models from data, feed these models directly into a finite element simulation, and predict stress and strain profiles that compare favorably to the classical Holzapfel model. Replacing dozens of individual material subroutines by a single universal material subroutine—populated directly via automated model discovery—will make finite element simulations more user-friendly, more robust, and less vulnerable to human error. Democratizing finite element simulation by automating model selection could induce a paradigm shift in physics-based modeling, broaden access to simulation technologies, and empower individuals with varying levels of expertise and diverse backgrounds to actively participate in scientific discovery and push the boundaries of biomedical simulation.more » « less
-
The ability to concisely describe the dynamical behavior of soft materials through closed-form constitutive relations holds the key to accelerated and informed design of materials and processes. The conventional approach is to construct constitutive relations through simplifying assumptions and approximating the time- and rate-dependent stress response of a complex fluid to an imposed deformation. While traditional frameworks have been foundational to our current understanding of soft materials, they often face a twofold existential limitation: i) Constructed on ideal and generalized assumptions, precise recovery of material-specific details is usually serendipitous, if possible, and ii) inherent biases that are involved by making those assumptions commonly come at the cost of new physical insight. This work introduces an approach by leveraging recent advances in scientific machine learning methodologies to discover the governing constitutive equation from experimental data for complex fluids. Our rheology-informed neural network framework is found capable of learning the hidden rheology of a complex fluid through a limited number of experiments. This is followed by construction of an unbiased material-specific constitutive relation that accurately describes a wide range of bulk dynamical behavior of the material. While extremely efficient in closed-form model discovery for a real-world complex system, the model also provides insight into the underpinning physics of the material.more » « less
An official website of the United States government

