skip to main content


This content will become publicly available on August 16, 2024

Title: A Generalized Constitutive Model for Versatile MPM Simulation and Inverse Learning with Differentiable Physics

We present a generalized constitutive model for versatile physics simulation of inviscid fluids, Newtonian viscosity, hyperelasticity, viscoplasticity, elastoplasticity, and other physical effects that arise due to a mixture of these behaviors. The key ideas behind our formulation are the design of a generalized Kirchhoff stress tensor that can describe hyperelasticity, Newtonian viscosity and inviscid fluids, and the use of pre-projection and post-correction rules for simulating material behaviors that involve plasticity, including elastoplasticity and viscoplasticity. We show how our generalized Kirchhoff stress tensor can be coupled together into a generalized constitutive model that allows the simulation of diverse material behaviors by only changing parameter values. We present several side-by-side comparisons with physics simulations for specific constitutive models to show that our generalized model produces visually similar results. More notably, our formulation allows for inverse learning of unknown material properties directly from data using differentiable physics simulations. We present several 3D simulations to highlight the robustness of our method, even with multiple different materials. To the best of our knowledge, our approach is the first to recover the knowledge of unknown material properties without making explicit assumptions about the data.

 
more » « less
Award ID(s):
2132972 2238955
NSF-PAR ID:
10493918
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Computer Graphics and Interactive Techniques
Volume:
6
Issue:
3
ISSN:
2577-6193
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Purpose . Laboratory models of human arterial tissues are advantageous to examine the mechanical response of blood vessels in a simplified and controllable manner. In the present study, we investigated three silicone-based materials for replicating the mechanical properties of human arteries documented in the literature. Methods . We performed uniaxial tensile tests up to rupture on Sylgard184, Sylgard170 and DowsilEE-3200 under different curing conditions and obtained their True (Cauchy) stress-strain behavior and Poisson’s ratios by means of digital image correlation (DIC). For each formulation, we derived the constitutive parameters of the 3-term Ogden model and designed numerical simulations of tubular models under a radial pressure of 250 mmHg. Results . Each material exhibits evident non-linear hyperelasticity and dependence on the curing condition. Sylgard184 is the stiffest formulation, with the highest shear moduli and ultimate stresses at relative low strains ( μ 184  = 0.52–0.88 MPa, σ 184  = 15.90–16.54 MPa, ε 184  = 0.72–0.96). Conversely, Sylgard170 and DowsilEE-3200 present significantly lower shear moduli and ultimate stresses that are closer to data reported for arterial tissues ( μ 170  = 0.33–0.7 MPa σ 170  = 2.61–3.67 MPa, ε 170  = 0.69–0.81; μ dow = 0.02–0.09 MPa σ dow = 0.83–2.05 MPa, ε dow = 0.91–1.05). Under radial pressure, all formulations except DowsilEE-3200 at 1:1 curing ratio undergo circumferential stresses that remain in the elastic region with values ranging from 0.1 to 0.18 MPa. Conclusion . Sylgard170 and DowsilEE-3200 appear to better reproduce the rupture behavior of vascular tissues within their typical ultimate stress and strain range. Numerical models demonstrate that all three materials achieve circumferential stresses similar to human common carotid arteries (Sommer et al 2010), making these formulations suited for cylindrical laboratory models under physiological and supraphysiological loading. 
    more » « less
  2. Poole, Robert J (Ed.)
    The FENE-P (Finitely-Extensible Nonlinear Elastic) dumbbell constitutive equation is widely used in simulations and stability analyses of free and wall-bounded viscoelastic shear flows due to its relative simplicity and accuracy in predicting macroscopic properties of dilute polymer solutions. The model contains three independent material parameters, which expressed in dimensionless form correspond to a Weissenberg number (Wi), i.e., the ratio of the dumbbell relaxation time scale to a characteristic flow time scale, a finite extensibility parameter (L), corresponding to the ratio of the fully extended dumbbell length to the root mean square end-to-end separation of the polymer chain under equilibrium conditions, and a solvent viscosity ratio. An exact solution for the rheological predictions of the FENE-P model in steady simple shear flow is available [Sureshkumar et al., Phys Fluids (1997)], but the resulting nonlinear and nested set of equations do not readily reveal the key shear-thinning physics that dominates at high Wi as a result of the finite extensibility of the polymer chain. In this note we review a simple way of evaluating the steady material functions characterizing the nonlinear evolution of the polymeric contributions to the shear stress and first normal stress difference as the shear rate increases, provide asymptotic expansions as a function of Wi , and show that it is in fact possible to construct universal master curves for these two material functions as well as the corresponding stress ratio. Steady shear flow experiments on three highly elastic dilute polymer solutions of different finite extensibilities also follow the identified master curves. The governing dimensionless parameter for these master curves is Wi/L and it is only in strong shear flows exceeding Wi/L > 1 that the effects of finite extensibility of the polymer chains dominate the evolution of polymeric stresses in the flow field. We suggest that reporting the magnitude of Wi/L when performing stability analyses or simulating shear-dominated flows with the FENE-P model will help clarify finite extensibility effects. 
    more » « less
  3. Mud is a suspension of fine-grained particles (sand, silt, and clay) in water. The interaction of clay minerals in mud gives rise to complex rheological behaviors, such as yield stress, thixotropy, and viscoelasticity. Here, we experimentally examine the flow behaviors of kaolinite clay suspensions, a model mud, using steady shear rheometry. The flow curves exhibit both yield stress and rheological hysteresis behaviors for various kaolinite volume fractions (ϕk). Further understanding of these behaviors requires fitting to existing constitutive models, which is challenging due to numerous fitting parameters. To this end, we employ a Bayesian inference method, Markov chain Monte Carlo, to fit the experimental flow curves to a microstructural viscoelastic model. The method allows us to estimate the rheological properties of the clay suspensions, such as viscosity, yield stress, and relaxation time scales. The comparison of the inherent relaxation time scales suggests that kaolinite clay suspensions are strongly viscoelastic and weakly thixotropic at relatively low ϕk, while being almost inelastic and purely thixotropic at high ϕk. Overall, our results provide a framework for predictive model fitting to elucidate the rheological behaviors of natural materials and other structured fluids.

     
    more » « less
  4. We perform three-dimensional numerical simulations to investigate the sedimentation of a single sphere in the absence and presence of a simple cross-shear flow in a yield stress fluid with weak inertia. In our simulations, the settling flow is considered to be the primary flow, whereas the linear cross-shear flow is a secondary flow with amplitude 10 % of the primary flow. To study the effects of elasticity and plasticity of the carrying fluid on the sphere drag as well as the flow dynamics, the fluid is modelled using the elastoviscoplastic constitutive laws proposed by Saramito ( J. Non-Newtonian Fluid Mech. , vol. 158 (1–3), 2009, pp. 154–161). The extra non-Newtonian stress tensor is fully coupled with the flow equation and the solid particle is represented by an immersed boundary method. Our results show that the fore–aft asymmetry in the velocity is less pronounced and the negative wake disappears when a linear cross-shear flow is applied. We find that the drag on a sphere settling in a sheared yield stress fluid is reduced significantly compared to an otherwise quiescent fluid. More importantly, the sphere drag in the presence of a secondary cross-shear flow cannot be derived from the pure sedimentation drag law owing to the nonlinear coupling between the simple shear flow and the uniform flow. Finally, we show that the drag on the sphere settling in a sheared yield stress fluid is reduced at higher material elasticity mainly due to the form and viscous drag reduction. 
    more » « less
  5. Many of the cell membrane's vital functions are achieved by the self-organization of the proteins and biopolymers embedded in it. The protein dynamics is in part determined by its drag. A large number of these proteins can polymerize to form filaments.In vitrostudies of protein–membrane interactions often involve using rigid beads coated with lipid bilayers, as a model for the cell membrane. Motivated by this, we use slender-body theory to compute the translational and rotational resistance of a single filamentous protein embedded in the outer layer of a supported bilayer membrane and surrounded on the exterior by a Newtonian fluid. We first consider the regime where the two layers are strongly coupled through their inter-leaflet friction. We find that the drag along the parallel direction grows linearly with the filament's length and quadratically with the length for the perpendicular and rotational drag coefficients. These findings are explained using scaling arguments and by analysing the velocity fields around the moving filament. We then present and discuss the qualitative differences between the drag of a filament moving in a freely suspended bilayer and a supported membrane as a function of the membrane's inter-leaflet friction. Finally, we briefly discuss how these findings can be used in experiments to determine membrane rheology. In summary, we present a formulation that allows computation of the effects of membrane properties (its curvature, viscosity and inter-leaflet friction), and the exterior and interior three-dimensional fluids’ depth and viscosity on the drag of a rod-like/filamentous protein, all in a unified theoretical framework.

     
    more » « less