skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate change and seismic resilience: Key considerations for Alaska’s infrastructure and built environment
Alaska is one of the most seismically active regions of the world. Coincidentally, the state has also experienced dramatic impacts of climate change as it is warming at twice the rate of the rest of the United States. Through mechanisms such as permafrost thaw, water table fluctuation, and melting of sea ice and glaciers, climatic-driven changes to the natural and built-environment influence the seismic response of infrastructure systems. This paper discusses the challenges and needs posed by earthquake hazards and climate change to Alaska’s infrastructure and built environment, drawing on the contributions of researchers and decision-makers in interviews and a workshop. It outlines policy, mitigation, and adaptation areas meriting further attention to improve the seismic resilience of Alaska’s built environment from the perspectives of engineering and complementary coupled human-environmental systems.  more » « less
Award ID(s):
2022628
PAR ID:
10494085
Author(s) / Creator(s):
Publisher / Repository:
Plos ONE
Date Published:
Journal Name:
PloS one
ISSN:
1932-6203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tajik, Nazanin (Ed.)
    Alaska is one of the most seismically active regions of the world. Coincidentally, the state has also experienced dramatic impacts of climate change as it is warming at twice the rate of the rest of the United States. Through mechanisms such as permafrost thaw, water table fluctuation, and melting of sea ice and glaciers, climatic-driven changes to the natural and built-environment influence the seismic response of infrastructure systems. This paper discusses the challenges and needs posed by earthquake hazards and climate change to Alaska’s infrastructure and built environment, drawing on the contributions of researchers and decision-makers in interviews and a workshop. It outlines policy, mitigation, and adaptation areas meriting further attention to improve the seismic resilience of Alaska’s built environment from the perspectives of engineering and complementary coupled human-environmental systems. 
    more » « less
  2. Land-based transport corridors and related infrastructure are increasingly extending into and across the Arctic in support of resource development and population growth, causing large-scale cumulative changes to northern socio-ecological systems. These changes include the increased mobility of people, goods and resources, and environmental impacts on landscapes and ecosystems as the human footprint reaches remote, unindustrialized regions. Arctic climate change is also generating new challenges for the construction and maintenance of these transport systems, requiring adaptive engineering solutions as well as community resilience. In this review article, we consider the complex entanglements between humans, the environment, and land transportation infrastructure in the North and illustrate these interrelations by way of seven case studies: the Baikal–Amur Mainline, Bovanenkovo Railway, Alaska–Canada Highway, Inuvik–Tuktoyatuk Highway, Alaska Railroad, Hudson Bay Railway, and proposed railways on Baffin Island, Canada. As new infrastructure is built and anticipated across the circumpolar North, there is an urgent need for an integrated socio-ecological approach to impact assessment. This would include full consideration of Indigenous knowledge and concerns, collaboration with local communities and user groups in assessment, planning and monitoring, and evaluation of alternative engineering designs to contend with the impacts of climate change in the decades ahead. 
    more » « less
  3. Urban heat exposure is an increasing health risk among urban dwellers. Many cities are considering accommodating active mobility, especially walking and biking, to reduce greenhouse gas emissions. However, promoting active mobility without proper planning and transportation infrastructure to combat extreme heat exposure may cause more heat-related morbidity and mortality, particularly in future with projected climate change. This study estimated the effectiveness of active trip heat exposure mitigation under built environment and travel behavior change. Simulations of the Phoenix metro region's 624,987 active trips were conducted using the activity-based travel model (ABM), mean radiant temperature (T MRT , net human radiation exposure), transportation network, and local climate zones. Two scenarios were designed to reduce traveler exposure: one that focuses on built environment change (making neighborhoods cooler) and the other on travel behavior (switching from shorter travel time but higher exposure routes to longer travel time but cooler routes) change. Travelers experienced T MRT heat exposure ranging from 29°C to 76°C (84°F to 168°F) without environmental or behavioral change. Active trip T MRT exposures were reduced by an average of 1.2–3.7°C when the built environment was changed from a hotter to cooler design. Behavioral changes cooled up to 10 times more trips than changes in built environment changes. The marginal benefit of cooling decreased as the number of cooled corridors transformed increased. When the most traveled 10 km of corridors were cooled, the marginal benefit affected over 1,000 trips/km. However, cooling all corridors results in marginal benefits as low as 1 trip/km. The results reveal that heavily traveled corridors should be prioritized with limited resources, and the best cooling results come from environment and travel behavior change together. The results show how to surgically invest in travel behavior and built environment change to most effectively protect active travelers. 
    more » « less
  4. Natural hazards, including hurricanes and earthquakes, can escalate into catastrophic societal events due to the destruction of the built environment. To minimize the impact of such hazards on vulnerable communities, civil infrastructure must be designed with performance criteria that prioritize public safety and ensure continuous operation. The National Science Foundation funded Natural Hazards Engineering Research Infrastructure (NHERI) program focuses on advancing the development of resilient infrastructure. The NHERI Lehigh Real-time Multi-directional Simulation Experimental Facility (EF) is one of the facilities within this program. The facility serves as an open-access research hub, offering advanced technologies and engineering tools to develop innovative solutions for natural hazard mitigation. It is uniquely equipped to perform large-scale, multi-directional structural testing in real-time using a cyber-physical simulation technique known as real-time hybrid simulation. This technique enables researchers to model entire systems subjected to dynamic loads at a full scale, allowing for realistic assessments of infrastructure responses to specific hazard scenarios and the development of effective mitigation strategies. This paper explores how cyber-physical simulation has revolutionized research in natural hazards engineering and its influence on engineering practices. It highlights several ongoing projects at the NHERI Lehigh EF aimed at enhancing community resilience in hazard-prone regions. The paper also discusses the planned expansion of the EF, which aims to broaden its focus to include a wider range of natural hazards, and infrastructure systems. This expansion will incorporate both physical and computational resources to enhance the understanding of fluid interactions in combined natural hazards and climate change impacts on coastal and offshore infrastructure. The NHERI Lehigh EF represents a transformative facility that is reshaping natural hazards research and will continue to play a pivotal role in the development of risk management strategies for more resilient communities. 
    more » « less
  5. Regular inspection and monitoring of buildings and infrastructure, that is collectively called the built environment in this paper, is critical. The built environment includes commercial and residential buildings, roads, bridges, tunnels, and pipelines. Automation and robotics can aid in reducing errors and increasing the efficiency of inspection tasks. As a result, robotic inspection and monitoring of the built environment has become a significant research topic in recent years. This review paper presents an in-depth qualitative content analysis of 269 papers on the use of robots for the inspection and monitoring of buildings and infrastructure. The review found nine different types of robotic systems, with unmanned aerial vehicles (UAVs) being the most common, followed by unmanned ground vehicles (UGVs). The study also found five different applications of robots in inspection and monitoring, namely, maintenance inspection, construction quality inspection, construction progress monitoring, as-built modeling, and safety inspection. Common research areas investigated by researchers include autonomous navigation, knowledge extraction, motion control systems, sensing, multi-robot collaboration, safety implications, and data transmission. The findings of this study provide insight into the recent research and developments in the field of robotic inspection and monitoring of the built environment and will benefit researchers, and construction and facility managers, in developing and implementing new robotic solutions. 
    more » « less