Abstract Trace element concentrations in abyssal peridotite olivine provide insights into the formation and evolution of the oceanic lithosphere. We present olivine trace element compositions (Al, Ca, Ti, V, Cr, Mn, Co, Ni, Zn, Y, Yb) from abyssal peridotites to investigate partial melting, melt–rock interaction, and subsolidus cooling at mid-ocean ridges and intra-oceanic forearcs. We targeted 44 peridotites from fast (Hess Deep, East Pacific Rise) and ultraslow (Gakkel and Southwest Indian Ridges) spreading ridges and the Tonga trench, including 5 peridotites that contain melt veins. We found that the abundances of Ti, Mn, Co, and Zn increase, while Ni decreases in melt-veined samples relative to unveined samples, suggesting that these elements are useful tracers of melt infiltration. The abundances of Al, Ca, Cr, and V in olivine are temperature sensitive. Thermometers utilizing Al and Ca in olivine indicate temperatures of 650–1000 °C, with variations corresponding to the contrasting cooling rates the peridotites experienced in different tectonic environments. Finally, we demonstrate with a two-stage model that olivine Y and Yb abundances reflect both partial melting and subsolidus re-equilibration. Samples that record lower Al- and Ca-in-olivine temperatures experienced higher extents of diffusive Y and Yb loss during cooling. Altogether, we demonstrate that olivine trace elements document both high-temperature melting and melt–rock interaction events, as well as subsolidus cooling related to their exhumation and emplacement onto the seafloor. This makes them useful tools to study processes associated with seafloor spreading and mid-ocean ridge tectonics.
more »
« less
Accurate analyses of key petrogenetic minor and trace elements in olivine by electron microprobe
Abundances of minor and trace elements in olivine are increasingly used as petrogenetic indicators for mantle source lithologies, mantle metasomatism history, mantle potential temperatures, and magmatic differentiation. As it is common for olivine to be complexly zoned on a fine-scale, high precision analytical methods for EPMA (electron microprobe microanalyzer, or Electron Microprobe) trace element analysis under high spatial resolution have been developed. However, previous studies have focused more on analytical precision with fewer efforts in examining the accuracy of the data. In this study, we used the Cameca SXFive field emission (FE) EPMA to fully evaluate the effects of beam settings, background offsets and background regression models, and primary calibration standards on the data accuracy of 10 key petrogenetic elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, and Zn) using MongOlSh11–2 olivine as a reference material. Our results indicate that high voltage, high beam current and long counting time not only improve data precision, but also improve data accuracy, especially on elements with low P/B (peak/background) ratios such as Zn and Cr. Importantly, careful background offsets and background regression models need to be obtained via high resolution WDS relative scans or step scans on each target element. Special care needs to be paid to Co element analysis to avoid or correct for peak interference of Fe Kβ. Among 10 minor and trace elements, exponential background regression models need to be applied to Al, Mn, and Ti elements, whereas other elements require linear background regression. Furthermore, to avoid Al and Zn surface contamination due to alumina polishing or brass presence, ultrasonic cleaning between each intermediate polishing steps and plasma cleaning immediately prior to EPMA experiments is highly recommended. Micro-inclusions such as chromite and spinel in olivine or adjacent Ca-rich phases need to be avoided to minimize primary or secondary fluorescence-related contamination on Al, Cr, or Ca. As a volatile element, Na element needs to be analyzed first with appropriate counting time to minimize the Na loss under high beam conditions. It needs mentioning that major elements (Mg, Fe, and Si) are best analyzed using MongOlSh11–2 or San Carlos olivine as primary standards for calibrations, which can yield more accurate data for both major elements and trace elements because of the improved matrix- corrections. Using our recommended analytical protocols, we have successfully discriminated “depleted” mantle olivine cores from an EMORB in northern East Pacific Rise (EPR) via Ca, Ti, Ni, Co, and Mn abundances. Our olivine data from Siqueiros Transform and the nearby 8◦20′ N seamounts also help reveal a metasomatized peridotite mantle beneath the northern EPR. Overall, the protocols proposed in this study can serve as a guide for accurate EPMA olivine trace element analyses, which potentially contributes to the efforts of fostering a comparable olivine database worldwide.
more »
« less
- Award ID(s):
- 2001314
- PAR ID:
- 10494192
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Chemical Geology
- Volume:
- 614
- Issue:
- C
- ISSN:
- 0009-2541
- Page Range / eLocation ID:
- 121199
- Subject(s) / Keyword(s):
- HP-EPMA Accurate EPMA trace element analysis Olivine geochemistry Mantle source lithologies Magma differentiation East Pacific Rise
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Models of subduction zone magmatism ascribe the andesitic composition of arc magmas to crustal processes, such as crustal assimilation and/or fractional crystallization, that basaltic mantle melts experience during their ascent through the upper plate crust. However, results from time series study of olivine-phyric high-Nb basalts and basaltic andesites from two monogenetic arc volcanoes (V. Chichinautzin and Texcal Flow) that are constructed on the ~45 km thick continental basement of the central Transmexican Volcanic Belt (TMVB) are inconsistent with this model. Instead, ratios of radiogenic isotope and incompatible trace elements suggest that these volcanoes were constructed through multiple individual melt batches ascending from a progressively changing mantle source. Moreover, the high Ni contents of the olivine phenocrysts, together with their high mantle-like 3He/4Heoliv =7-8 Ra with high crustal δ18O oliv = +5.5 to +6.5‰ (n=12) point to the presence of secondary ‘reaction pyroxenites’ in the mantle source that create primary silicic arc magmas through melt-rock reaction processes in the mantle [1, 2] . Here we present additional trace element concentration of the high-Ni olivines by electron microprobe (Mn, Ca) and laser-ablation ICPMS (Li, Cr and V) analysis in order to test this model. Olivine Li (2-7 ppm) and Mn (1170- 2810 ppm) increase with decreasing fosterite (Fo89 to Fo75), while Cr (29-364 ppm), V (4-11 ppm) and Ca (825-2390 ppm) decrease. Quantitative modeling shows that these trends in their entirety cannot be controlled by fractional crystallization under variable melt water H2O or oxygen fugacity (fO2), or co-crystallization of Cr-spinel. Instead, the variations support the existence of compositionally distinct melt batches during earliest melt evolution. Moreover, the trace element trends are qualitatively consistent with a model of progressive source depletion by serial melting (shown in olivine Ca, V and Cr) that is triggered by the repetitive addition of silicic slab components (shown by olivine Li). These findings suggest mantle source variations are not eliminated despite the thick crust these magmas pass during ascent. [1] Straub et al. (2013) J Petrol 54 (4): 665-701; [2] Straub et al. (2015) Geochim Cosmochim Acta 166: 29-52.more » « less
-
Bogdanović; Iva; Lorenz, Katharina (Ed.)PIXE analysis was conducted on p8 fisher brand filter paper samples soaked in elemental standard solutions to determine the minimum detectable levels of Al, Si, P, S, Cl, K, Ca, Cr, Fe, Ni, Cu, and Se. All samples were analyzed with beam parameters of 2 µC incident charge, and beam current of less than 2 nA at 2 MeV beam energy. Minimum detectable levels were obtained by analyzing the x-ray spectrum in the GeoPIXE analysis package, and the data for each element would be averaged over all collected spectra. The minimum detectable level in parts per million was found to be on average 9.59 for Al, 4.6 for Si, 3.23 for P, 2.27 for S, 1.82 for Cl, 1.15 for K, 0.88 for Ca, 0.51 for Cr, 0.07 for Mn, 0.54 for Fe, 1.59 for Ni, 2.0 for Zn, 1.55 for Cu, and 6.5 for Se. Minimal deviation from the averaged values was observed, except in cases where samples contained high concentrations of elements with overlapping X-ray energies.more » « less
-
Abstract Mineral/melt partition coefficients have been widely used to provide insights into magmatic processes. Olivine is one of the most abundant and important minerals in the lunar mantle and mare basalts. Yet, no systematic olivine/melt partitioning data are available for lunar conditions. We report trace element partition data between host mineral olivine and its melt inclusions in lunar basalts. Equilibrium is evaluated using the Fe-Mg exchange coefficient, leading to the choice of melt inclusion-host olivine pairs in lunar basalts 12040, 12009, 15016, 15647, and 74235. Partition coefficients of 21 elements (Li, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Y, Zr, Nb, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were measured. Except for Li, V, and Cr, these elements show no significant difference in olivine-melt partitioning compared to the data for terrestrial samples. The partition coefficient of Li between olivine and melt in some lunar basalts with low Mg# (Mg# < 0.75 in olivine, or < ~0.5 in melt) is higher than published data for terrestrial samples, which is attributed to the dependence of DLi on Mg# and the lack of literature DLi data with low Mg#. The partition coefficient of V in lunar basalts is measured to be 0.17 to 0.74, significantly higher than that in terrestrial basalts (0.003 to 0.21), which can be explained by the lower oxygen fugacity in lunar basalts. The significantly higher DV can explain why V is less enriched in evolved lunar basalts than terrestrial basalts. The partition coefficient of Cr between olivine and basalt melt in the Moon is 0.11 to 0.62, which is lower than those in terrestrial settings by a factor of ~2. This is surprising because previous authors showed that Cr partition coefficient is independent of fO2. A quasi-thermodynamically based model is developed to correlate Cr partition coefficient to olivine and melt composition and fO2. The lower Cr partition coefficient between olivine and basalt in the Moon can lead to more Cr enrichment in the lunar magma ocean, as well as more Cr enrichment in mantle-derived basalts in the Moon. Hence, even though Cr is typically a compatible element in terrestrial basalts, it is moderately incompatible in primitive lunar basalts, with a similar degree of incompatibility as V based on partition coefficients in this work, as also evidenced by the relatively constant V/Cr ratio of 0.039 ± 0.011 in lunar basalts. The confirmation of constant V/Cr ratio is important for constraining concentrations of Cr (slightly volatile and siderophile) and V (slightly siderophile) in the bulk silicate Moon.more » « less
-
Wildfires significantly influence the environmental distribution of various elements through their fire-induced input and mobilization, yet little is known about their effects on the forest floor in Siberian forests. The present study evaluated the effects of spring wildfires of various severities on the levels of major and minor (Ca, Al, Fe, S, Mg, K, Na, Mn, P, Ti, Ba, and Sr) trace and ultra-trace (B, Co, Cr, Cu, Ni, Se, V, Zn, Pb, As, La, Sn, Sc, Sb, Be, Bi, Hg, Li, Mo, and Cd) elements in the forest floors of Siberian forests. The forest floor (Oi layer) samples were collected immediately following wildfires in Scots pine (Pinus sylvestris L.), larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.), and birch (Betula pendula Roth) forests. Total concentrations of elements were determined using inductively coupled plasma–optical emission spectroscopy. All fires resulted in a decrease in organic matter content and an increase in mineral material content and pH values in the forest floor. The concentrations of most elements studied in a burned layer of forest floor were statistically significantly higher than in unburned precursors. Sb and Sn showed no statistically significant changes. The forest floor in the birch forest showed a higher increase in mineral material content after the fire and higher levels of most elements studied than the burned coniferous forest floors. Ca was a predominant element in both unburned and burned samples in all forests studied. Our study highlighted the role of wildfires in Siberia in enhancing the levels of geochemical elements in forest floor and the effect of forest type and fire severity on ash characteristics. The increased concentrations of elements represent a potential source of surface water contamination with toxic and eutrophying elements if wildfire ash is transported with overland flow.more » « less
An official website of the United States government

