An expurgating linear function (ELF) is an outer code that disallows low-weight codewords of the inner code. ELFs can be designed either to maximize the minimum distance or to minimize the codeword error rate (CER) of the expurgated code. A list-decoding sieve can efficiently identify ELFs that maximize the minimum distance of the expurgated code. For convolutional inner codes, this paper provides analytical distance spectrum union (DSU) bounds on the CER of the concatenated code.
For short codeword lengths, ELFs transform a good inner code into a great concatenated code. For a constant message size of K = 64 bits or constant codeword blocklength of N = 152 bits, an ELF can reduce the gap at CER 10−6 between the DSU and the random-coding union (RCU) bounds from over 1 dB for the inner code alone to 0.23 dB for the concatenated code. The DSU bounds can also characterize puncturing that mitigates the rate overhead of the ELF while maintaining the DSU-to-RCU gap. List Viterbi decoding guided by the ELF achieves maximum likelihood (ML) decoding of the concatenated code with a sufficiently large list size. The rate-K/(K+m) ELF outer code reduces rate and list decoding increases decoder complexity. As SNR increases, the average list size converges to 1 and average complexity is similar to Viterbi decoding on the trellis of the inner code. For rare large-magnitude noise events, which occur less often than the FER of the inner code, a deep search in the list finds the ML codeword.
more »
« less
This content will become publicly available on January 30, 2025
Pseudorandom Linear Codes Are List-Decodable to Capacity
We introduce a novel family of expander-based error correcting codes. These codes can be sampled with randomness linear in the block-length, and achieve list decoding capacity (among other local properties). Our expander-based codes can be made starting from any family of sufficiently low-bias codes, and as a consequence, we give the first construction of a family of algebraic codes that can be sampled with linear randomness and achieve list-decoding capacity. We achieve this by introducing the notion of a pseudorandom puncturing of a code, where we select n indices of a base code C ⊂ 𝔽_q^m in a correlated fashion. Concretely, whereas a random linear code (i.e. a truly random puncturing of the Hadamard code) requires O(n log(m)) random bits to sample, we sample a pseudorandom linear code with O(n + log (m)) random bits by instantiating our pseudorandom puncturing as a length n random walk on an exapnder graph on [m]. In particular, we extend a result of Guruswami and Mosheiff (FOCS 2022) and show that a pseudorandom puncturing of a small-bias code satisfies the same local properties as a random linear code with high probability. As a further application of our techniques, we also show that pseudorandom puncturings of Reed-Solomon codes are list-recoverable beyond the Johnson bound, extending a result of Lund and Potukuchi (RANDOM 2020). We do this by instead analyzing properties of codes with large distance, and show that pseudorandom puncturings still work well in this regime.
more »
« less
- Award ID(s):
- 2310818
- PAR ID:
- 10494228
- Publisher / Repository:
- 15th Innovations in Theoretical Computer Science Conference, ITCS 2024
- Date Published:
- Journal Name:
- 15th Innovations in Theoretical Computer Science Conference, ITCS 2024
- Page Range / eLocation ID:
- 90:1-90:21
- Format(s):
- Medium: X
- Location:
- Berkeley, California
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents new achievability bounds on the maximal achievable rate of variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC) at a fixed message size M=2^k . We provide bounds for two cases: The first case considers VLSF codes with possibly infinite decoding times and zero error probability. The second case limits the maximum (finite) number of decoding times and specifies a maximum tolerable probability of error. Both new achievability bounds are proved by constructing a new VLSF code that employs systematic transmission of the first k message bits followed by random linear fountain parity bits decoded with a rank decoder. For VLSF codes with infinite decoding times, our new bound outperforms the state-of-the-art result for BEC by Devassy et al. in 2016. We show that the backoff from capacity reduces to zero as the erasure probability decreases, thus giving a negative answer to the open question Devassy et al. posed on whether the 23.4% backoff to capacity at k=3 is fundamental to all BECs. For VLSF codes with finite decoding times, numerical evaluations show that the systematic transmission followed by random linear fountain coding performs better than random linear coding in terms of achievable rates.more » « less
-
Random linear codes (RLCs) are well known to have nice combinatorial properties and near-optimal parameters in many different settings. However, getting explicit constructions matching the parameters of RLCs is challenging, and RLCs are hard to decode efficiently. This motivated several previous works to study the problem of partially derandomizing RLCs, by applying certain operations to an explicit mother code. Among them, one of the most well studied operations is random puncturing, where a series of works culminated in the work of Guruswami and Mosheiff (FOCS’ 22), which showed that a random puncturing of a low-biased code is likely to possess almost all interesting local properties of RLCs. In this work, we provide an in-depth study of another, dual operation of random puncturing, known as random shortening, which can be viewed equivalently as random puncturing on the dual code. Our main results show that for any small , by starting from a mother code with certain weaker conditions (e.g., having a large distance) and performing a random (or even pseudorandom) shortening, the new code is -biased with high probability. Our results hold for any field size and yield a shortened code with constant rate. This can be viewed as a complement to random puncturing, and together, we can obtain codes with properties like RLCs from weaker initial conditions. Our proofs involve several non-trivial methods of estimating the weight distribution of codewords, which may be of independent interest.more » « less
-
List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form r=1−ε for ε tending to zero. Our main result states that there exist Reed-Solomon codes with rate Ω(ε) which are (1−ε,O(1/ε)) -list-decodable, meaning that any Hamming ball of radius 1−ε contains at most O(1/ε) codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance.more » « less
-
The recursive projection-aggregation (RPA) decoding algorithm for Reed-Muller (RM) codes was recently introduced by Ye and Abbe. We show that the RPA algorithm is closely related to (weighted) belief-propagation (BP) decoding by interpreting it as a message-passing algorithm on a factor graph with redundant code constraints. We use this observation to introduce a novel decoder tailored to high-rate RM codes. The new algorithm relies on puncturing rather than projections and is called recursive puncturing-aggregation (RXA). We also investigate collapsed (i.e., non-recursive) versions of RPA and RXA and show some examples where they achieve similar performance with lower decoding complexity.more » « less