skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasma Wave and Particle Dynamics During Interchange Events in the Jovian Magnetosphere Using Juno Observations
Interchange instability is known to drive fast radial transport of particles in Jupiter's inner magnetosphere. Magnetic flux tubes associated with the interchange instability often coincide with changes in particle distributions and plasma waves, but further investigations are required to understand their detailed characteristics. We analyze representative interchange events observed by Juno, which exhibit intriguing features of particle distributions and plasma waves, including Z‐mode and whistler‐mode waves. These events occurred at an equatorial radial distance of ∼9 Jovian radii on the nightside, with Z‐mode waves observed at mid‐latitude and whistler‐mode waves near the equator. We calculate the linear growth rate of whistler‐mode and Z‐mode waves based on the observed plasma parameters and electron distributions and find that both waves can be locally generated within the interchanged flux tube. Our findings are important for understanding particle transport and generation of plasma waves in the magnetospheres of Jupiter and other planetary systems.  more » « less
Award ID(s):
2203321
PAR ID:
10494263
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Interchange instability is known to drive fast radial transport of electrons and ions in Jupiter's inner and middle magnetosphere. In this study, we conduct a statistical survey to evaluate the properties of energetic particles and plasma waves during interchange events using Juno data from 2016 to 2023. We present representative examples of interchange events followed by a statistical analysis of the spatial distribution, duration and spatial extent. Our survey indicates that interchange instability is predominant atM‐shells from 6 to 26, peaking near 17 with an average duration of minutes and a correspondingM‐shell width of <∼0.05. During interchange events, the associated plasma waves, such as whistler‐mode, Z‐mode, and electron cyclotron harmonic waves exhibit a distinct preferential location. These findings provide valuable insights into particle transport and the source region of plasma waves in the Jovian magnetosphere, as well as in other magnetized planets within and beyond our solar system. 
    more » « less
  2. Abstract Whistler‐mode waves are commonly observed within the lunar environment, while their variations during Interplanetary (IP) shocks are not fully understood yet. In this paper, we analyze two IP shock events observed by Acceleration, Reconnection, Turbulence and Electrodynamics of the Moons Interaction with the Sun (ARTEMIS) satellites while the Moon was exposed to the solar wind. In the first event, ARTEMIS detected whistler‐mode wave intensification, accompanied by sharply increased hot electron flux and anisotropy across the shock ramp. The potential reflection or backscattering of electrons by the lunar crustal magnetic field is found to be favorable for whistler‐mode wave intensification. In the second event, a magnetic field line rotation around the shock region was observed and correlated with whistler‐mode wave intensification. The wave growth rates calculated using linear theory agree well with the observed wave spectra. Our study highlights the significance of magnetic field variations and anisotropic hot electron distributions in generating whistler‐mode waves in the lunar plasma environment following IP shock arrivals. 
    more » « less
  3. Abstract Thermalization and heating of plasma flows at shocks result in unstable charged-particle distributions that generate a wide range of electromagnetic waves. These waves, in turn, can further accelerate and scatter energetic particles. Thus, the properties of the waves and their implication for wave−particle interactions are critically important for modeling energetic particle dynamics in shock environments. Whistler-mode waves, excited by the electron heat flux or a temperature anisotropy, arise naturally near shocks and foreshock transients. As a result, they can often interact with suprathermal electrons. The low background magnetic field typical at the core of such transients and the large wave amplitudes may cause such interactions to enter the nonlinear regime. In this study, we present a statistical characterization of whistler-mode waves at foreshock transients around Earth’s bow shock, as they are observed under a wide range of upstream conditions. We find that a significant portion of them are sufficiently intense and coherent (narrowband) to warrant nonlinear treatment. Copious observations of background magnetic field gradients and intense whistler wave amplitudes suggest that phase trapping, a very effective mechanism for electron acceleration in inhomogeneous plasmas, may be the cause. We discuss the implications of our findings for electron acceleration in planetary and astrophysical shock environments. 
    more » « less
  4. Abstract Electron losses from the outer radiation belt are typically attributed to resonant electron scattering by whistler‐mode waves. Although the quasi‐linear diffusive regime of such scattering is well understood, the observed waves are often quite intense and in the nonlinear regime of resonant wave‐particle interaction. Such nonlinear resonant interactions are still being actively studied due to their potential for driving fast precipitation. However, direct observations of nonlinear resonance of whistler‐mode waves with electron distributions are scarce. Here, we present evidence for such resonance with high‐resolution electron energy and pitch angle spectra acquired at low‐altitudes by the dual Electron Losses and Fields INvestgation (ELFIN) CubeSats combined with conjugate measurements of equatorial plasma parameters, wave properties, and electron energy spectra by the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric MultiScale missions. ELFIN has obtained numerous conjunction events exhibiting whistler wave driven precipitation; in this study, we present two such events which epitomize signatures of nonlinear resonant scattering. A test particle simulation of electron interactions with intense whistler‐mode waves prescribed at the equator is employed to directly compare modeled precipitation spectra with ELFIN observations. We show that the observed precipitating spectra match expectations to within observational uncertainties of wave amplitude for reasonable assumptions of wave power distribution along the magnetic field line. These results indicate the importance of nonlinear resonant effects when describing intense precipitation patterns of energetic electrons and open the possibility of remotely investigating equatorial wave properties using just properties of precipitation energy and pitch angle spectra. 
    more » « less
  5. Abstract The magnetotail is the main source of energetic electrons for Earth’s inner magnetosphere. Electrons are adiabatically heated during flow bursts (rapid earthward motion of the plasma) within dipolarizing flux bundles (concurrent increases and dipolarizations of the magnetic field). The electron heating is evidenced near or within dipolarizing flux bundles as rapid increases in the energetic electron flux (10–100 keV); it is often referred to as injection. The anisotropy in the injected electron distributions, which is often perpendicular to the magnetic field, generates whistler‐mode waves, also commonly observed around such dipolarizing flux bundles. Test‐particle simulations reproduce several features of injections and electron adiabatic dynamics. However, the feedback of the waves on the electron distributions has been not incorporated into such simulations. This is because it has been unclear, thus far, whether incorporating such feedback is necessary to explain the evolution of the electron pitch‐angle and energy distributions from their origin, reconnection ejecta in the mid‐tail region, to their final destination, and the electron injection sites in the inner magnetosphere. Using an analytical model we demonstrate that wave feedback is indeed important for the evolution of electron distributions. Combining canonical guiding center theory and the mapping technique we model electron adiabatic heating and scattering by whistler‐mode waves around a dipolarizing flux bundle. Comparison with spacecraft observations allows us to validate the efficacy of the proposed methodology. Specifically, we demonstrate that electron resonant interactions with whistler‐mode waves can indeed change markedly the pitch‐angle distribution of energetic electrons at the injection site and are thus critical to incorporate in order to explain the observations. We discuss the importance of such resonant interactions for injection physics and for magnetosphere‐ionosphere coupling. 
    more » « less