skip to main content


This content will become publicly available on September 30, 2024

Title: On the Descriptive Complexity of Groups without Abelian Normal Subgroups (Extended Abstract)
In this paper, we explore the descriptive complexity theory of finite groups by examining the power of the second Ehrenfeucht-Fraisse bijective pebble game in Hella's (Ann. Pure Appl. Log., 1989) hierarchy. This is a Spoiler-Duplicator game in which Spoiler can place up to two pebbles each round. While it trivially solves graph isomorphism, it may be nontrivial for finite groups, and other ternary relational structures. We first provide a novel generalization of Weisfeiler-Leman (WL) coloring, which we call 2-ary WL. We then show that the 2-ary WL is equivalent to the second Ehrenfeucht-Fraisse bijective pebble game in Hella's hierarchy. Our main result is that, in the pebble game characterization, only O(1) pebbles and O(1) rounds are sufficient to identify all groups without Abelian normal subgroups (a class of groups for which isomorphism testing is known to be in P; Babai, Codenotti, & Qiao, ICALP 2012). In particular, we show that within the first few rounds, Spoiler can force Duplicator to select an isomorphism between two such groups at each subsequent round. By Hella's results (ibid.), this is equivalent to saying that these groups are identified by formulas in first-order logic with generalized 2-ary quantifiers, using only O(1) variables and O(1) quantifier depth.  more » « less
Award ID(s):
2047756
NSF-PAR ID:
10494292
Author(s) / Creator(s):
;
Editor(s):
Antonis Achilleos; Dario Della Monica
Publisher / Repository:
arXiv
Date Published:
Journal Name:
Electronic Proceedings in Theoretical Computer Science
Volume:
390
ISSN:
2075-2180
Page Range / eLocation ID:
185 to 202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the task of measuring time with probabilistic threshold gates implemented by bio-inspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. Discovering the underlying mechanisms by which the brain perceives the duration of time is one of the largest open enigma in computational neuroscience. To gain a better algorithmic understanding onto these processes, we introduce the neural timer problem. In this problem, one is given a time parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum sized neural network (measured by the number of auxiliary neurons) in which every spike from x in a given round i, makes the output y fire for the subsequent t consecutive rounds.We first consider a deterministic implementation of a neural timer and show that Θ(logt)(deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2 t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(log log 1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{log log 1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks.Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks. In the spirit of distributed synchronizers [Awerbuch-Peleg, FOCS’90], we provide a general transformation (or simulation) that can take any synchronized network solution and simulate it in an asynchronous setting (where edges have arbitrary response latencies) while incurring a small overhead w.r.t the number of neurons and computation time. 
    more » « less
  2. We study local symmetry breaking problems in the Congest model, focusing on ruling set problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time (round) complexity of MIS (and ruling sets) have attracted much attention in the Local model. Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem have tried to break the long-standing O(log n)-round "barrier" achieved by Luby's algorithm, but these yield o(log n)-round complexity only when the maximum degree Delta is somewhat small relative to n. More importantly, these results apply only in the Local model. In fact, the best known time bound in the Congest model is still O(log n) (via Luby's algorithm) even for moderately small Delta (i.e., for Delta = Omega(log n) and Delta = o(n)). Furthermore, message complexity has been largely ignored in the context of local symmetry breaking. Luby's algorithm takes O(m) messages on m-edge graphs and this is the best known bound with respect to messages. Our work is motivated by the following central question: can we break the Theta(log n) time complexity barrier and the Theta(m) message complexity barrier in the Congest model for MIS or closely-related symmetry breaking problems? This paper presents progress towards this question for the distributed ruling set problem in the Congest model. A beta-ruling set is an independent set such that every node in the graph is at most beta hops from a node in the independent set. We present the following results: - Time Complexity: We show that we can break the O(log n) "barrier" for 2- and 3-ruling sets. We compute 3-ruling sets in O(log n/log log n) rounds with high probability (whp). More generally we show that 2-ruling sets can be computed in O(log Delta (log n)^(1/2 + epsilon) + log n/log log n) rounds for any epsilon > 0, which is o(log n) for a wide range of Delta values (e.g., Delta = 2^(log n)^(1/2-epsilon)). These are the first 2- and 3-ruling set algorithms to improve over the O(log n)-round complexity of Luby's algorithm in the Congest model. - Message Complexity: We show an Omega(n^2) lower bound on the message complexity of computing an MIS (i.e., 1-ruling set) which holds also for randomized algorithms and present a contrast to this by showing a randomized algorithm for 2-ruling sets that, whp, uses only O(n log^2 n) messages and runs in O(Delta log n) rounds. This is the first message-efficient algorithm known for ruling sets, which has message complexity nearly linear in n (which is optimal up to a polylogarithmic factor). 
    more » « less
  3. We study local symmetry breaking problems in the Congest model, focusing on ruling set problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time (round) complexity of MIS (and ruling sets) have attracted much attention in the Local model. Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem have tried to break the long-standing O(log n)-round “barrier” achieved by Luby’s algorithm, but these yield o(log n)-round complexity only when the maximum degree  is somewhat small relative to n. More importantly, these results apply only in the Local model. In fact, the best known time bound in the Congest model is still O(log n) (via Luby’s algorithm) even for moderately small  (i.e., for  = (log n) and  = o(n)). Furthermore, message complexity has been largely ignored in the context of local symmetry breaking. Luby’s algorithm takes O(m) messages on m-edge graphs and this is the best known bound with respect to messages. Our work is motivated by the following central question: can we break the (log n) time complexity barrier and the (m) message complexity barrier in the Congest model for MIS or closelyrelated symmetry breaking problems? This paper presents progress towards this question for the distributed ruling set problem in the Congest model. A -ruling set is an independent set such that every node in the graph is at most hops from a node in the independent set. We present the following results: Time Complexity: We show that we can break the O(log n) “barrier” for 2- and 3-ruling sets. We compute 3-ruling sets in O  log n log log n  rounds with high probability (whp). More generally we show that 2-ruling sets can be computed in O  log · (log n)1/2+" + log n log log n  rounds for any " > 0, which is o(log n) for a wide range of  values (e.g.,  = 2(log n)1/2−" ). These are the first 2- and 3-ruling set algorithms to improve over the O(log n)-round complexity of Luby’s algorithm in the Congest model. Message Complexity: We show an (n2) lower bound on the message complexity of computing an MIS (i.e., 1-ruling set) which holds also for randomized algorithms and present a contrast to this by showing a randomized algorithm for 2-ruling sets that, whp, uses only O(n log2 n) messages and runs in O( log n) rounds. This is the first message-efficient algorithm known for ruling sets, which has message complexity nearly linear in n (which is optimal up to a polylogarithmic factor). 
    more » « less
  4. null (Ed.)
    The ability to detect and count certain substructures in graphs is important for solving many tasks on graph-structured data, especially in the contexts of computa- tional chemistry and biology as well as social network analysis. Inspired by this, we propose to study the expressive power of graph neural networks (GNNs) via their ability to count attributed graph substructures, extending recent works that examine their power in graph isomorphism testing and function approximation. We distinguish between two types of substructure counting: induced-subgraph-count and subgraph-count, and establish both positive and negative answers for popular GNN architectures. Specifically, we prove that Message Passing Neural Networks (MPNNs), 2-Weisfeiler-Lehman (2-WL) and 2-Invariant Graph Networks (2-IGNs) cannot perform induced-subgraph-count of any connected substructure consisting of 3 or more nodes, while they can perform subgraph-count of star-shaped sub- structures. As an intermediary step, we prove that 2-WL and 2-IGNs are equivalent in distinguishing non-isomorphic graphs, partly answering an open problem raised in [38]. We also prove positive results for k-WL and k-IGNs as well as negative results for k-WL with a finite number of iterations. We then conduct experiments that support the theoretical results for MPNNs and 2-IGNs. Moreover, motivated by substructure counting and inspired by [45], we propose the Local Relational Pooling model and demonstrate that it is not only effective for substructure counting but also able to achieve competitive performance on molecular prediction tasks. 
    more » « less
  5. Memory-hard functions (MHFs) are a key cryptographic primitive underlying the design of moderately expensive password hashing algorithms and egalitarian proofs of work. Over the past few years several increasingly stringent goals for an MHF have been proposed including the requirement that the MHF have high sequential space-time (ST) complexity, parallel space-time complexity, amortized area-time (aAT) complexity and sustained space complexity. Data-Independent Memory Hard Functions (iMHFs) are of special interest in the context of password hashing as they naturally resist side-channel attacks. iMHFs can be specified using a directed acyclic graph (DAG) $G$ with $N=2^n$ nodes and low indegree and the complexity of the iMHF can be analyzed using a pebbling game. Recently, Alwen et al. [CCS'17] constructed an DAG called DRSample which has aAT complexity at least $\Omega\left( N^2/\log N\right)$. Asymptotically DRSample outperformed all prior iMHF constructions including Argon2i, winner of the password hashing competition (aAT cost $\mathcal{O}\left(N^{1.767}\right)$), though the constants in these bounds are poorly understood. We show that the the greedy pebbling strategy of Boneh et al. [ASIACRYPT'16] is particularly effective against DRSample e.g., the aAT cost is $\mathcal{O}\left( N^2/\log N\right)$. In fact, our empirical analysis {\em reverses} the prior conclusion of Alwen et al. that DRSample provides stronger resistance to known pebbling attacks for practical values of $N \leq 2^{24}$. We construct a new iMHF candidate (DRSample+BRG) by using the bit-reversal graph to extend DRSample. We then prove that the construction is asymptotically optimal under every MHF criteria, and we empirically demonstrate that our iMHF provides the best resistance to {\em known} pebbling attacks. For example, we show that any parallel pebbling attack either has aAT cost $\omega(N^2)$ or requires at least $\Omega(N)$ steps with $\Omega(N/\log N)$ pebbles on the DAG. This makes our construction the first practical iMHF with a strong sustained space-complexity guarantee and immediately implies that any parallel pebbling has aAT complexity $\Omega(N^2/\log N)$. We also prove that any sequential pebbling (including the greedy pebbling attack) has aAT cost $\Omega\left( N^2\right)$ and, if a plausible conjecture holds, any parallel pebbling has aAT cost $\Omega(N^2 \log \log N/\log N)$ --- the best possible bound for an iMHF. We implement our new iMHF and demonstrate that it is just as fast as Argon2. Along the way we propose a simple modification to the Argon2 round function which increases an attacker's aAT cost by nearly an order of magnitude without increasing running time on a CPU. Finally, we give a pebbling reduction which proves that in the parallel random oracle model (PROM) the cost of evaluating an iMHF like Argon2i or DRSample+BRG is given by the pebbling cost of the underlying DAG. Prior pebbling reductions assumed that the iMHF round function concatenates input labels before hashing and did not apply to practical iMHFs such as Argon2i, DRSample or DRSample+BRG where input labels are instead XORed together. 
    more » « less