skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The flexural strength of bonded ice
Abstract. The flexural strength of ice surfaces bonded by freezing, termedfreeze bond, was studied by performing four-point bending tests of bondedfreshwater S2 columnar-grained ice samples in the laboratory. The sampleswere prepared by milling the surfaces of two ice pieces, wetting two of thesurfaces with water of varying salinity, bringing these surfaces together,and then letting them freeze under a compressive stress of about 4 kPa. Thesalinity of the water used for wetting the surfaces to generate the bondvaried from 0 to 35 ppt (parts per thousand). Freezing occurred in air under temperatures varyingfrom −25 to −3 ∘C over periods that varied from 0.5 to∼ 100 h. Results show that an increase in bond salinity ortemperature leads to a decrease in bond strength. The trend for the bondstrength as a function of salinity is similar to that presented in Timco andO'Brien (1994) for saline ice. No freezing occurs at −3 ∘C oncethe salinity of the water used to generate the bond exceeds ∼ 25 ppt. The strength of the saline ice bonds levels off (i.e., saturates)within 6–12 h of freezing; bonds formed from freshwater reach strengthsthat are comparable or higher than that of the parent material in less than0.5 h.  more » « less
Award ID(s):
1947107
PAR ID:
10494407
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Copernicus
Date Published:
Journal Name:
The Cryosphere
Volume:
15
Issue:
6
ISSN:
1994-0424
Page Range / eLocation ID:
2957 to 2967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. New systematic experiments reveal that the flexural strength of saline S2 columnar-grained ice loaded normal to the columns can be increased upon cyclic loading by about a factor of 1.5. The experiments were conducted using reversed cyclic loading over ranges of frequencies from 0.1 to 0.6 Hz and at a temperature of −10 ∘C on saline ice of two salinities: 3.0 ± 0.9 and 5.9 ± 0.6 ‰. Acoustic emission hit rate during cycling increases with an increase in stress amplitude of cycling. Flexural strength of saline ice of 3.0 ± 0.9 ‰ salinity appears to increase linearly with increasing stress amplitude, similar to the behavior of laboratory-grown freshwater ice (Murdza et al., 2020b) and to the behavior of lake ice (Murdza et al., 2021). The flexural strength of saline ice of 5.9 ± 0.6 ‰ depends on the vertical location of the sample within the thickness of an ice puck; i.e., the strength of the upper layers, which have a lower brine content, was found to be as high as 3 times that of lower layers. The fatigue life of saline ice is erratic. Cyclic strengthening is attributed to the development of an internal back stress that opposes the applied stress and possibly originates from dislocation pileups. 
    more » « less
  2. Textured surfaces are commonly designed to preclude wetting by water. The design of surfaces that are not wetted by alcohols represents a considerable challenge given the low surface tension, viscosity, and density of these liquids. Herein, a hierarchically textured plastronic architecture that can suspend alcohol droplets in a metastable Cassie–Baxter regime is presented. As a result of microtexturation of the underlying stainless steel mesh, multiscale texturation derived from ZnO tetrapods, and surface functionalization with perfluorinated‐polyhedral oligomeric silsesquioxanes, the surfaces glide aliphatic alcohols, water, andn‐hexadecane. The design of surfaces not wetted by alcohols is particularly relevant to “point‐of‐care” environments. Because of the minimized interfacial contact areas, the textured surfaces further greatly inhibit ice nucleation at solid/liquid interfaces. High‐speed video imaging of the freezing and droplet impact shows that the textured surfaces delay ice nucleation by inhibiting heterogeneous nucleation, more effectively channel kinetic energy upon droplet impact to break up impinging droplets, and greatly limit frost formation. Once ice forms, its adhesion is substantially diminished by about three orders of magnitude as compared with planar substrates. The results demonstrate a scalable spray deposition method to generate surfaces for enabling the deterministic flow of liquids as well as inhibit ice formation. 
    more » « less
  3. The degradation of permafrost alters deformation and long-term strength, posing challenges to existing and future civil infrastructure in Northern Alaska. Long-term strength is a critical parameter in the design of civil projects; yet, to our best knowledge, data on the creep deformation and long-term strength of undisturbed permafrost in Northern Alaska remain limited. Soil particle fraction, unfrozen water content, temperature, and salinity may interactively affect creep deformation and long-term strength of permafrost; however, their interactive effects are not well understood. In this study, field samples of relatively undisturbed permafrost from the upper 1.5 m of the Arctic Coastal Plain near Utqiaġvik, Alaska, were first retrieved and analyzed. The permafrost was characterized as saline ice-rich silty sand and nonuniformly distributed ice. We conducted constant stress creep tests, unconfined compression strength tests, and unfrozen water content tests to assess the mechanical and physical properties of the permafrost cores. The results indicated that the long-term strength of the permafrost decreased by nearly 90% from −10°C to −2°C. At −10°C, the long-term strength increased by approximately 120% as the soil particle fraction rose from 0.14 to 0.26. The strengthening effect of soil particles diminished at higher temperatures and higher salinity due to the influence of unfrozen water. A quantitative tool has been developed to predict the long-term strength of ice-rich permafrost, incorporating the effects of soil particle fraction and temperature. The findings of this study can potentially support infrastructure design and planning in Northern Alaska in the context of a warming climate. 
    more » « less
  4. The synthesis of the title compound, C 13 H 21 NO 2 S, is reported here along with its crystal structure. This compound crystallizes with two molecules in the asymmetric unit. The sulfonamide functional group of this structure features S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—C bond lengths of 1.777 (3) and 1.773 (4) Å, and S—N bond lengths of 1.622 (3) and 1.624 (3) Å. When viewing the molecules down the S—N bond, the isopropyl groups are gauche to the aromatic ring. On each molecule, two methyl hydrogen atoms of one isopropyl group are engaged in intramolecular C—H...O hydrogen bonds with a nearby sulfonamide oxygen atom. Intermolecular C—H...O hydrogen bonds and C—H...π interactions link molecules of the title compound in the solid state. 
    more » « less
  5. In the title compound, 3-[(2-acetamidophenyl)imino]butan-2-one, C 12 H 14 N 2 O 2 , the imine C=N bond is essentially coplanar with the ketone C=O bond in an s-trans conformation. The benzene ring is twisted away from the plane of the C=N bond by 53.03 (14)°. The acetamido unit is essentially coplanar with the benzene ring. In the crystal, molecules are connected into chains along the c axis through C—H...O hydrogen bonds, with two adjacent chains being hinged by C—H...O hydrogen bonds. 
    more » « less