Abstract. New systematic experiments reveal that the flexural strength of saline S2 columnar-grained ice loaded normal to the columns can be increased upon cyclic loading by about a factor of 1.5. The experiments were conducted using reversed cyclic loading over ranges of frequencies from 0.1 to 0.6 Hz and at a temperature of −10 ∘C on saline ice of two salinities: 3.0 ± 0.9 and 5.9 ± 0.6 ‰. Acoustic emission hit rate during cycling increases with an increase in stress amplitude of cycling. Flexural strength of saline ice of 3.0 ± 0.9 ‰ salinity appears to increase linearly with increasing stress amplitude, similar to the behavior of laboratory-grown freshwater ice (Murdza et al., 2020b) and to the behavior of lake ice (Murdza et al., 2021). The flexural strength of saline ice of 5.9 ± 0.6 ‰ depends on the vertical location of the sample within the thickness of an ice puck; i.e., the strength of the upper layers, which have a lower brine content, was found to be as high as 3 times that of lower layers. The fatigue life of saline ice is erratic. Cyclic strengthening is attributed to the development of an internal back stress that opposes the applied stress and possibly originates from dislocation pileups.
more »
« less
The flexural strength of bonded ice
Abstract. The flexural strength of ice surfaces bonded by freezing, termedfreeze bond, was studied by performing four-point bending tests of bondedfreshwater S2 columnar-grained ice samples in the laboratory. The sampleswere prepared by milling the surfaces of two ice pieces, wetting two of thesurfaces with water of varying salinity, bringing these surfaces together,and then letting them freeze under a compressive stress of about 4 kPa. Thesalinity of the water used for wetting the surfaces to generate the bondvaried from 0 to 35 ppt (parts per thousand). Freezing occurred in air under temperatures varyingfrom −25 to −3 ∘C over periods that varied from 0.5 to∼ 100 h. Results show that an increase in bond salinity ortemperature leads to a decrease in bond strength. The trend for the bondstrength as a function of salinity is similar to that presented in Timco andO'Brien (1994) for saline ice. No freezing occurs at −3 ∘C oncethe salinity of the water used to generate the bond exceeds ∼ 25 ppt. The strength of the saline ice bonds levels off (i.e., saturates)within 6–12 h of freezing; bonds formed from freshwater reach strengthsthat are comparable or higher than that of the parent material in less than0.5 h.
more »
« less
- Award ID(s):
- 1947107
- PAR ID:
- 10494407
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 15
- Issue:
- 6
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 2957 to 2967
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Textured surfaces are commonly designed to preclude wetting by water. The design of surfaces that are not wetted by alcohols represents a considerable challenge given the low surface tension, viscosity, and density of these liquids. Herein, a hierarchically textured plastronic architecture that can suspend alcohol droplets in a metastable Cassie–Baxter regime is presented. As a result of microtexturation of the underlying stainless steel mesh, multiscale texturation derived from ZnO tetrapods, and surface functionalization with perfluorinated‐polyhedral oligomeric silsesquioxanes, the surfaces glide aliphatic alcohols, water, andn‐hexadecane. The design of surfaces not wetted by alcohols is particularly relevant to “point‐of‐care” environments. Because of the minimized interfacial contact areas, the textured surfaces further greatly inhibit ice nucleation at solid/liquid interfaces. High‐speed video imaging of the freezing and droplet impact shows that the textured surfaces delay ice nucleation by inhibiting heterogeneous nucleation, more effectively channel kinetic energy upon droplet impact to break up impinging droplets, and greatly limit frost formation. Once ice forms, its adhesion is substantially diminished by about three orders of magnitude as compared with planar substrates. The results demonstrate a scalable spray deposition method to generate surfaces for enabling the deterministic flow of liquids as well as inhibit ice formation.more » « less
-
The synthesis of the title compound, C 13 H 21 NO 2 S, is reported here along with its crystal structure. This compound crystallizes with two molecules in the asymmetric unit. The sulfonamide functional group of this structure features S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—C bond lengths of 1.777 (3) and 1.773 (4) Å, and S—N bond lengths of 1.622 (3) and 1.624 (3) Å. When viewing the molecules down the S—N bond, the isopropyl groups are gauche to the aromatic ring. On each molecule, two methyl hydrogen atoms of one isopropyl group are engaged in intramolecular C—H...O hydrogen bonds with a nearby sulfonamide oxygen atom. Intermolecular C—H...O hydrogen bonds and C—H...π interactions link molecules of the title compound in the solid state.more » « less
-
Certain microalgal species, such as Scenedesmus obliquus strain HTB1, thrive under high CO2 concentrations, making them promising for carbon sequestration to mitigate climate change. Isolated from the Baltimore Inner Harbor, HTB1 grows faster with 10 % CO2 than with ambient air. To investigate its responses to salinity and elevated CO2, two experiments were conducted. In the first, HTB1 was cultured at seven different salinities (0, 17.5, 20, 22.5, 25, 27.5, and 30 ppt) (parts per thousand) under ambient air. Higher salinity caused cell shrinkage, color changes from green to pale white, reduced pigments like zeaxanthin, lutein, and chlorophyll b, but increased canthaxanthin. Growth declined significantly above 22.5 ppt. The second experiment compared HTB1's response to salinity (0, 10, 20 ppt) under air and 10 % CO2. Cultures under 10 % CO2 showed minimal color changes, while those under air shifted from green to brown, with salinity having less inhibitory effects on growth under elevated CO2. Interestingly, lutein and canthaxanthin levels rose with salinity in 10 % CO2. These findings indicate that elevated CO2 mitigates salt stress in HTB1, reducing its impact on growth and promoting adaptive pigment changes. This study sheds light on how salinity and CO2 interact to influence HTB1's morphology, growth, and pigment composition, enhancing our understanding of its resilience and potential applications.more » « less
-
In the title compound, 3-[(2-acetamidophenyl)imino]butan-2-one, C 12 H 14 N 2 O 2 , the imine C=N bond is essentially coplanar with the ketone C=O bond in an s-trans conformation. The benzene ring is twisted away from the plane of the C=N bond by 53.03 (14)°. The acetamido unit is essentially coplanar with the benzene ring. In the crystal, molecules are connected into chains along the c axis through C—H...O hydrogen bonds, with two adjacent chains being hinged by C—H...O hydrogen bonds.more » « less
An official website of the United States government

