skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-scale considerations of unconventional superconductors—implications to condensation and pairing
Part of Special Issue: Oxide superconductors and beyond - In memoriam of Professor Karl Alex Müller, Abstract: Discovery of high-Tc cuprate superconductors (HTSC) in 1986 by Bednorz and Muller, followed by synthesis of A3C60, iron-pnictides/chalcogenides and other exotic superconducting (SC) systems, introduced unconventional superconductors (UCSC) having their mechanisms of condensation and/or pairing distinctly different from those of simpler metals which can be explained by BCS theory. This article will show how one can demonstrate their new mechanisms by examining correlations among key energy-scale parameters, including the transition temperature Tc, the superfluid density ns/m*, the effective Fermi energy εF, the excitation energy of the magnetic resonance mode (MRM), the onset temperatures of Nernst effect and light-induced transient superconductivity, and the spin fluctuation energy scale ℏωsf, and by resorting to analogy / comparisons with superfluid 4He as a representative system undergoing Bose Einstein Condensation (BEC). We will propose a paring mechanism in HTSC based on resonance of spin (ℏωsf) and charge (εF) energy scales, and apply that concept for explaining unusual behaviors in the overdoped region. We will also discuss modifications of a simple BEC-BCS crossover picture to account for actual situations with additional effects of competing order and phase separation.  more » « less
Award ID(s):
2104661
PAR ID:
10494412
Author(s) / Creator(s):
Editor(s):
Keller, Hugo; Bussmann-Holder, Annette; Deutscher, Guy; Lorenzana, José; Malozemoff, Alexis P.; Mihailovic, Dragan; Chu, Ching W
Publisher / Repository:
Elsevier, Physica
Date Published:
Journal Name:
Physica C: Superconductivity and its Applications
Volume:
614
Issue:
C
ISSN:
0921-4534
Page Range / eLocation ID:
1354361
Subject(s) / Keyword(s):
High Tc superconductivity Muon spin relaxation Superfluid density
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The structures of multiply quantized vortices (MQVs) of an equal-population atomic Fermi superfluid in a rotating spherical bubble trap approximated as a thin shell are analyzed by solving the Bogoliubov-de Gennes (BdG) equation throughout the BCS-Bose Einstein condensation (BEC) crossover. Consistent with the Poincare-Hopf theorem, a pair of vortices emerge at the poles of the rotation axis in the presence of azimuthal symmetry, and the compact geometry provides confinement for the MQVs. While the single-vorticity vortex structure is similar to that in a planar geometry, higher-vorticity vortices exhibit interesting phenomena at the vortex center, such as a density peak due to accumulation of a normal Fermi gas and reversed circulation of current due to in-gap states carrying angular momentum, in the BCS regime but not the BEC regime because of the subtle relations between the order parameter and density. The energy spectrum shows the number of the in-gap state branches corresponds to the vorticity of a vortex, and an explanation based on a topological correspondence is provided. 
    more » « less
  2. Abstract We examine key aspects of the theory of the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) crossover, focusing on the temperature dependence of the chemical potential,μ. We identify an accurate method of determining the change ofμin the cuprate high temperature superconductors from angle-resolved-photoemission data (along the ‘nodal’ direction), and show thatμvaries by less than a few percent of the Fermi energy over a range of temperatures from far below to several times above the superconducting transition temperature,Tc. This shows, unambiguously, that not only are these materials always on the BCS side of the crossover (which is a phase transition in thed-wave case), but are nowhere near the point of the crossover (where the chemical potential approaches the band bottom). 
    more » « less
  3. Abstract Ultra-cold Fermi gases exhibit a rich array of quantum mechanical properties, including the transition from a fermionic superfluid Bardeen-Cooper-Schrieffer (BCS) state to a bosonic superfluid Bose-Einstein condensate (BEC). While these properties can be precisely probed experimentally, accurately describing them poses significant theoretical challenges due to strong pairing correlations and the non-perturbative nature of particle interactions. In this work, we introduce a Pfaffian-Jastrow neural-network quantum state featuring a message-passing architecture to efficiently capture pairing and backflow correlations. We benchmark our approach on existing Slater-Jastrow frameworks and state-of-the-art diffusion Monte Carlo methods, demonstrating a performance advantage and the scalability of our scheme. We show that transfer learning stabilizes the training process in the presence of strong, short-ranged interactions, and allows for an effective exploration of the BCS-BEC crossover region. Our findings highlight the potential of neural-network quantum states as a promising strategy for investigating ultra-cold Fermi gases. 
    more » « less
  4. null (Ed.)
    Abstract Superfluid 3 He, with unconventional spin-triplet p-wave pairing, provides a model system for topological superconductors, which have attracted significant interest through potential applications in topologically protected quantum computing. In topological insulators and quantum Hall systems, the surface/edge states, arising from bulk-surface correspondence and the momentum space topology of the band structure, are robust. Here we demonstrate that in topological superfluids and superconductors the surface Andreev bound states, which depend on the momentum space topology of the emergent order parameter, are fragile with respect to the details of surface scattering. We confine superfluid 3 He within a cavity of height D comparable to the Cooper pair diameter ξ 0 . We precisely determine the superfluid transition temperature T c and the suppression of the superfluid energy gap, for different scattering conditions tuned in situ, and compare to the predictions of quasiclassical theory. We discover that surface magnetic scattering leads to unexpectedly large suppression of T c , corresponding to an increased density of low energy bound states. 
    more » « less
  5. The emergence of quasiparticles in interacting matter represents one of the cornerstones of modern physics. However, in the vicinity of a quantum critical point, the existence of quasiparticles comes under question. Here, we created Bose polarons near quantum criticality by immersing atomic impurities in a Bose-Einstein condensate (BEC) with near-resonant interactions. Using radiofrequency spectroscopy, we probed the energy, spectral width, and short-range correlations of the impurities as a function of temperature. Far below the superfluid critical temperature, the impurities formed well-defined quasiparticles. Their inverse lifetime, given by their spectral width, increased linearly with temperature at the so-called Planckian scale, consistent with quantum critical behavior. Close to the BEC critical temperature, the spectral width exceeded the impurity’s binding energy, signaling a breakdown of the quasiparticle picture. 
    more » « less