The low-temperature properties of a wide range of many-fermion systems spanning metals, quantum gases and liquids to nuclear matter are well understood within the framework of Landau’s theory of Fermi liquids. The low-energy physics of these systems is governed by interacting fermionic quasiparticles with momenta and energies near a Fermi surface in momentum space. Nonequilibrium properties are described by a kinetic equation for the distribution function for quasiparticles proposed by Landau. Quasiparticle interactions with other quasiparticles, phonons, or impurities lead to internal forces acting on a distribution of nonequilibrium quasiparticles, as well as collision processes that ultimately limit the transport of mass, heat, charge, and magnetization, as well as limiting the coherence times of quasiparticles. For Fermi liquids that are close to a second-order phase transition, e.g., Fermi liquids that undergo a superfluid transition, incipient Cooper pairs—long-lived fluctuations of the ordered phase—provide a new channel for scattering quasiparticles, as well as corrections to internal forces acting on the distribution of nonequilibrium quasiparticles. We develop the theory of quasiparticle transport for Fermi liquids in the vicinity of a BCS-type superfluid transition starting from Keldysh’s field theory for nonequilibrium, strongly interacting fermions. The leading corrections to Fermi-liquid theory for nonequilibrium quasiparticle transportmore »
The emergence of quasiparticles in interacting matter represents one of the cornerstones of modern physics. However, in the vicinity of a quantum critical point, the existence of quasiparticles comes under question. Here, we created Bose polarons near quantum criticality by immersing atomic impurities in a Bose-Einstein condensate (BEC) with near-resonant interactions. Using radiofrequency spectroscopy, we probed the energy, spectral width, and short-range correlations of the impurities as a function of temperature. Far below the superfluid critical temperature, the impurities formed well-defined quasiparticles. Their inverse lifetime, given by their spectral width, increased linearly with temperature at the so-called Planckian scale, consistent with quantum critical behavior. Close to the BEC critical temperature, the spectral width exceeded the impurity’s binding energy, signaling a breakdown of the quasiparticle picture.
- Award ID(s):
- 1734011
- Publication Date:
- NSF-PAR ID:
- 10143811
- Journal Name:
- Science
- Volume:
- 368
- Issue:
- 6487
- Page Range or eLocation-ID:
- p. 190-194
- ISSN:
- 0036-8075
- Publisher:
- American Association for the Advancement of Science (AAAS)
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We examine key aspects of the theory of the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) crossover, focusing on the temperature dependence of the chemical potential,
μ . We identify an accurate method of determining the change ofμ in the cuprate high temperature superconductors from angle-resolved-photoemission data (along the ‘nodal’ direction), and show thatμ varies by less than a few percent of the Fermi energy over a range of temperatures from far below to several times above the superconducting transition temperature,T c . This shows, unambiguously, that not only are these materials always on the BCS side of the crossover (which is a phase transition in thed -wave case), but are nowhere near the point of the crossover (where the chemical potential approaches the band bottom). -
We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasiparticles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasilinear interband contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies, the optical response is governed by transitions between a previously unobserved fourfold spin-3/2 nodemore »
-
Abstract At low-temperatures a gas of bosons will undergo a phase transition into a quantum state of matter known as a Bose–Einstein condensate (BEC), in which a large fraction of the particles will occupy the ground state simultaneously. Here we explore the performance of an endoreversible Otto cycle operating with a harmonically confined Bose gas as the working medium. We analyze the engine operation in three regimes, with the working medium in the BEC phase, in the gas phase, and driven across the BEC transition during each cycle. We find that the unique properties of the BEC phase allow for enhanced engine performance, including increased power output and higher efficiency at maximum power.
-
In addition to their attractive technological applications in photovoltaics and light emitters, the perovskite family of semiconductors has recently emerged as an excellent excitonic material for fundamental studies. Specifically, the 2D hybrid organic-inorganic perovskite (HOIP) offers the added advantage of room temperature investigations owing to their large exciton binding energy. In this work, we strongly couple excitons in 2D HOIP crystals to planar microcavity photons sustaining exciton-polaritons under ambient conditions resulting in a Rabi splitting of 290 meV. Dark excitons directly pump the polariton branch along its dispersion in resonance with the Stokes shifted emission state (radiative pumping), creating a high density of polaritons at higher in-plane momentum (
k ||). We further probe the nonlinear polariton dispersion dynamics at varying input laser fluence, which indicates efficient polariton-polariton scattering and decay tok || = 0 from higherk ||. The observation of Stokes shift-assisted energy exchange of dark states with lower polaritons coupled with evidence of efficient polariton-polariton scattering makes 2D HOIPs an attractive platform to study exciton-polariton many-body physics and Bose-Einstein like condensation (BEC) at room temperature.