skip to main content


Title: Bose polarons near quantum criticality

The emergence of quasiparticles in interacting matter represents one of the cornerstones of modern physics. However, in the vicinity of a quantum critical point, the existence of quasiparticles comes under question. Here, we created Bose polarons near quantum criticality by immersing atomic impurities in a Bose-Einstein condensate (BEC) with near-resonant interactions. Using radiofrequency spectroscopy, we probed the energy, spectral width, and short-range correlations of the impurities as a function of temperature. Far below the superfluid critical temperature, the impurities formed well-defined quasiparticles. Their inverse lifetime, given by their spectral width, increased linearly with temperature at the so-called Planckian scale, consistent with quantum critical behavior. Close to the BEC critical temperature, the spectral width exceeded the impurity’s binding energy, signaling a breakdown of the quasiparticle picture.

 
more » « less
Award ID(s):
1734011
NSF-PAR ID:
10143811
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6487
ISSN:
0036-8075
Page Range / eLocation ID:
p. 190-194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The low-temperature properties of a wide range of many-fermion systems spanning metals, quantum gases and liquids to nuclear matter are well understood within the framework of Landau’s theory of Fermi liquids. The low-energy physics of these systems is governed by interacting fermionic quasiparticles with momenta and energies near a Fermi surface in momentum space. Nonequilibrium properties are described by a kinetic equation for the distribution function for quasiparticles proposed by Landau. Quasiparticle interactions with other quasiparticles, phonons, or impurities lead to internal forces acting on a distribution of nonequilibrium quasiparticles, as well as collision processes that ultimately limit the transport of mass, heat, charge, and magnetization, as well as limiting the coherence times of quasiparticles. For Fermi liquids that are close to a second-order phase transition, e.g., Fermi liquids that undergo a superfluid transition, incipient Cooper pairs—long-lived fluctuations of the ordered phase—provide a new channel for scattering quasiparticles, as well as corrections to internal forces acting on the distribution of nonequilibrium quasiparticles. We develop the theory of quasiparticle transport for Fermi liquids in the vicinity of a BCS-type superfluid transition starting from Keldysh’s field theory for nonequilibrium, strongly interacting fermions. The leading corrections to Fermi-liquid theory for nonequilibrium quasiparticle transport near a Cooper instability arise from the virtual emission and absorption of incipient Cooper pairs. Our theory is applicable to quasiparticle transport in superconductors, nuclear matter, and the low-temperature phases of liquid 3He. As an implementation of the theory we calculate the pairing-fluctuation corrections to the attenuation of zero sound in liquid 3He near the superfluid transition and demonstrate quantitative agreement with experimental results.

     
    more » « less
  2. Abstract

    We examine key aspects of the theory of the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) crossover, focusing on the temperature dependence of the chemical potential,μ. We identify an accurate method of determining the change ofμin the cuprate high temperature superconductors from angle-resolved-photoemission data (along the ‘nodal’ direction), and show thatμvaries by less than a few percent of the Fermi energy over a range of temperatures from far below to several times above the superconducting transition temperature,Tc. This shows, unambiguously, that not only are these materials always on the BCS side of the crossover (which is a phase transition in thed-wave case), but are nowhere near the point of the crossover (where the chemical potential approaches the band bottom).

     
    more » « less
  3. Abstract

    At low-temperatures a gas of bosons will undergo a phase transition into a quantum state of matter known as a Bose–Einstein condensate (BEC), in which a large fraction of the particles will occupy the ground state simultaneously. Here we explore the performance of an endoreversible Otto cycle operating with a harmonically confined Bose gas as the working medium. We analyze the engine operation in three regimes, with the working medium in the BEC phase, in the gas phase, and driven across the BEC transition during each cycle. We find that the unique properties of the BEC phase allow for enhanced engine performance, including increased power output and higher efficiency at maximum power.

     
    more » « less
  4. In addition to their attractive technological applications in photovoltaics and light emitters, the perovskite family of semiconductors has recently emerged as an excellent excitonic material for fundamental studies. Specifically, the 2D hybrid organic-inorganic perovskite (HOIP) offers the added advantage of room temperature investigations owing to their large exciton binding energy. In this work, we strongly couple excitons in 2D HOIP crystals to planar microcavity photons sustaining exciton-polaritons under ambient conditions resulting in a Rabi splitting of 290 meV. Dark excitons directly pump the polariton branch along its dispersion in resonance with the Stokes shifted emission state (radiative pumping), creating a high density of polaritons at higher in-plane momentum (k||). We further probe the nonlinear polariton dispersion dynamics at varying input laser fluence, which indicates efficient polariton-polariton scattering and decay tok|| = 0 from higherk||. The observation of Stokes shift-assisted energy exchange of dark states with lower polaritons coupled with evidence of efficient polariton-polariton scattering makes 2D HOIPs an attractive platform to study exciton-polariton many-body physics and Bose-Einstein like condensation (BEC) at room temperature.

     
    more » « less
  5. Keller, Hugo ; Bussmann-Holder, Annette ; Deutscher, Guy ; Lorenzana, José ; Malozemoff, Alexis P. ; Mihailovic, Dragan ; Chu, Ching W (Ed.)
    Part of Special Issue: Oxide superconductors and beyond - In memoriam of Professor Karl Alex Müller, Abstract: Discovery of high-Tc cuprate superconductors (HTSC) in 1986 by Bednorz and Muller, followed by synthesis of A3C60, iron-pnictides/chalcogenides and other exotic superconducting (SC) systems, introduced unconventional superconductors (UCSC) having their mechanisms of condensation and/or pairing distinctly different from those of simpler metals which can be explained by BCS theory. This article will show how one can demonstrate their new mechanisms by examining correlations among key energy-scale parameters, including the transition temperature Tc, the superfluid density ns/m*, the effective Fermi energy εF, the excitation energy of the magnetic resonance mode (MRM), the onset temperatures of Nernst effect and light-induced transient superconductivity, and the spin fluctuation energy scale ℏωsf, and by resorting to analogy / comparisons with superfluid 4He as a representative system undergoing Bose Einstein Condensation (BEC). We will propose a paring mechanism in HTSC based on resonance of spin (ℏωsf) and charge (εF) energy scales, and apply that concept for explaining unusual behaviors in the overdoped region. We will also discuss modifications of a simple BEC-BCS crossover picture to account for actual situations with additional effects of competing order and phase separation. 
    more » « less