Abstract Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.
more »
« less
Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart
Adding a cationic helper lipid to a lipid nanoparticle (LNP) can increase lung delivery and decrease liver delivery. However, it remains unclear whether charge-dependent tropism is universal or, alternatively, whether it depends on the component that is charged. Here, we report evidence that cationic cholesterol-dependent tropism can differ from cationic helper lipid-dependent tropism. By testing how 196 LNPs delivered mRNA to 22 cell types, we found that charged cholesterols led to a different lung:liver delivery ratio than charged helper lipids. We also found that combining cationic cholesterol with a cationic helper lipid led to mRNA delivery in the heart as well as several lung cell types, including stem cell-like populations. These data highlight the utility of exploring charge-dependent LNP tropism.
more »
« less
- Award ID(s):
- 2145235
- PAR ID:
- 10494468
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 11
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA‐LNPs) offer a viable platform for in situ engineering of CAR monocytes with transient and tunable CAR expression to reduce off‐tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques. Here, ionizable lipid design and high‐throughput in vivo screening are utilized to identify a new class of oxidized LNPs with innate tropism and mRNA delivery to monocytes. A library of oxidized (oLNPs) and unoxidized LNPs (uLNPs) is synthesized to evaluate mRNA delivery to immune cells. oLNPs demonstrate notable differences in morphology, ionization energy, and pKa, thereby enhancing delivery to human macrophages, but not T cells. Subsequently, in vivo library screening with DNA barcodes identifies an oLNP formulation, C14‐O2, with innate tropism to monocytes. In a proof‐of‐concept study, the C14‐O2 LNP is used to engineer functional CD19‐CAR monocytes in situ for robust B cell aplasia (45%) in healthy mice. This work highlights the utility of oxidized LNPs as a promising platform for engineering CAR macrophages/monocytes for solid tumor CAR monocyte therapy.more » « less
-
The pKa values and associated protonation states of ionizable lipids in lipid nanoparticle (LNP) formulations are strongly dependent on their chemical environment. This phenomenon leads to poorly understood structure-function relationships that influence payload delivery, tissue-selective biodistribution, and manufacturing. For example, the charge- and biodistribution of an mRNA-loaded LNP can vary based on the type of ionizable lipid used, the molar ratio of its components, and its cargo. Yet, the spatial resolution of experimental protonation state measurements is currently limited to the apparent charge of an ionizable lipid averaged over all environments/conformations of an LNP — best represented by its apparent pKa value. Such measurements are too coarse to capture the heterogenous charge distributions of ionizable lipids in LNPs, which influence biocorona formation and interactions with the payload. Similar limitations are inherent to classical fixed protonation-state in silico models that cannot capture the environment-dependent protonation states and pKa values determining local pKa. To address this gap in experimental and computational tools available to accurately determine the local charge distributions in LNPs, this work now incorporates a scalable continuous constant pH molecular dynamics (CpHMD) model to simulate the self-assembly processes of five reported distinct LNP formulations. Parameters for ionizable lipids were generated from fitting fixed lambda-state calculations performed with Hamiltonian replica exchange (HREX) to improve conformational sampling during parameterization. Simulated systems were composed of 100 ionizable lipids (50 mol%), cholesterol (40 mol%), distearoylphosphatidylcholine (10 mol%), and mRNA (20 nucleotides) to model the interior of an LNP. Self-assembly was simulated for 100 ns at different pH values to validate the apparent pKa for each system. The theoretically calculated apparent pKa values matched reasonably well with those measured experimentally (mean absolute error = 0.5 pKa units), and all systems exhibited pH-dependent structures. Overall, this work provides a new computational platform technology to (i) predict the pKa values of ionizable lipids in different chemical environments and (ii) enable a structure-based way to model the heterogeneous, environment-dependent charge distributions of ionizable lipids in LNP systems typically encountered during LNP manufacturing and delivery.more » « less
-
Abstract With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long‐term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab‐LNPs) to target pan‐T cell markers. The in vivo evaluation of these Ab‐LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab‐LNPs for the delivery of CAR mRNA, antibody and dose‐dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan‐T cell markers, and develops Ab‐LNPs capable of generating functional CAR T cells in vivo.more » « less
-
Abstract During healthy pregnancy, the placenta develops to allow for exchange of nutrients and oxygen between the mother and the fetus. However, placental dysregulation can lead to several pregnancy disorders, such as preeclampsia and fetal growth restriction. Recently, lipid nanoparticle (LNP)‐mediated delivery of messenger RNA (mRNA) has been explored as a promising approach to treat these disorders. Here, iterative libraries of LNPs with varied excipient molar ratios are screened in vitro for enhanced mRNA delivery to placental cells with minimal cytotoxicity when compared to an LNP formulation with a standard excipient molar ratio. LNP C5, the top formulation identified by these screens, demonstrates a fourfold increase in mRNA delivery in vitro compared to the standard formulation. Intravenous administration of LNP C5 to pregnant mice achieves improved in vivo placental mRNA delivery compared to the standard formulation and mediates mRNA delivery to placental trophoblasts, endothelial cells, and immune cells. These results identify LNP C5 as a promising optimized LNP formulation for placental mRNA delivery and further validates the design of experiments strategy for LNP excipient optimization to enhance mRNA delivery to cell types and organs of interest.more » « less
An official website of the United States government

