skip to main content


This content will become publicly available on November 23, 2024

Title: Quantitative Aspects of Gas-Phase Metal Ion Chemistry: Conservation of Spin, Participation of f Orbitals, and C–H Activation and C–C Coupling
In this feature article, I reflect on over 40 years of guided ion beam tandem mass spectrometry (GIBMS) studies involving atomic metal cations and their clusters throughout the periodic table. Studies that have considered the role of spin conservation (or lack thereof) are a primary focus, with a quantitative assessment of the effects examined. A need for state-specific studies of heavier elements is noted as is a more quantitative assessment of spin-orbit interactions in reactivity. Because GIBMS experiments explicitly evaluate the kinetic energy dependence of reactions over a wide range, several interesting and unusual observations are highlighted. More detailed studies of such unusual reaction events would be welcome. Activation of C-H bonds and ensuing C-C coupling events are reviewed, with future work encouraged. Finally, studies of lanthanides and actinides are examined with an eye on understanding the role of f orbitals in the chemistry, both as participants (or not) in the bonding and as sources/sinks of electron density. This area seems ripe for more quantitative experiments.  more » « less
Award ID(s):
2313553
NSF-PAR ID:
10494471
Author(s) / Creator(s):
Publisher / Repository:
J. Phys. Chem. B
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
127
Issue:
46
ISSN:
1089-5639
Page Range / eLocation ID:
9641 to 9653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The elemental stoichiometry of marine phytoplankton plays a critical role in global biogeochemical cycles through its impact on nutrient cycling, secondary production, and carbon export. Although extensive laboratory experiments have been carried out over the years to assess the influence of different environmental drivers on the elemental composition of phytoplankton, a comprehensive quantitative assessment of the processes is still lacking. Here, we synthesized the responses of P:C and N:C ratios of marine phytoplankton to five major drivers (inorganic phosphorus, inorganic nitrogen, inorganic iron, irradiance, and temperature) by a meta-analysis of experimental data across 366 experiments from 104 journal articles. Our results show that the response of these ratios to changes in macronutrients is consistent across all the studies, where the increase in nutrient availability is positively related to changes in P:C and N:C ratios. We found that eukaryotic phytoplankton are more sensitive to the changes in macronutrients compared to prokaryotes, possibly due to their larger cell size and their abilities to regulate their gene expression patterns quickly. The effect of irradiance was significant and constant across all studies, where an increase in irradiance decreased both P:C and N:C. The P:C ratio decreased significantly with warming, but the response to temperature changes was mixed depending on the culture growth mode and the growth phase at the time of harvest. Along with other oceanographic conditions of the subtropical gyres (e.g., low macronutrient availability), the elevated temperature may explain why P:C is consistently low in subtropical oceans. Iron addition did not systematically change either P:C or N:C. Overall, our findings highlight the high stoichiometric plasticity of eukaryotes and the importance of macronutrients in determining P:C and N:C ratios, which both provide us insights on how to understand and model plankton diversity and productivity. 
    more » « less
  2. Climate change continues to challenge food, energy, and water systems (FEWS) across the globe and will figure prominently in shaping future decisions on how best to manage this nexus. In turn, traditionally engineered and natural infrastructures jointly support and hence determine FEWS performance, their vulnerabilities, and their resilience in light of extreme climate events. We present here a research framework to advance the modeling, data integration, and assessment capabilities that support hypothesis-driven research on FEWS dynamics cast at the macro-regional scale. The framework was developed to support studies on climate-induced extremes on food, energy, and water systems (C-FEWS) and designed to identify and evaluate response options to extreme climate events in the context of managing traditionally engineered (TEI) and nature-based infrastructures (NBI). This paper presents our strategy for a first stage of research using the framework to analyze contemporary FEWS and their sensitivity to climate drivers shaped by historical conditions (1980–2019). We offer a description of the computational framework, working definitions of the climate extremes analyzed, and example configurations of numerical experiments aimed at evaluating the importance of individual and combined driving variables. Single and multiple factor experiments involving the historical time series enable two categories of outputs to be analyzed: the first involving biogeophysical entities (e.g., crop production, carbon sequestered, nutrient and thermal pollution loads) and the second reflecting a portfolio of services provided by the region’s TEI and NBI, evaluated in economic terms. The framework is exercised in a series of companion papers in this special issue that focus on the Northeast and Midwest regions of the United States. Use of the C-FEWS framework to simulate historical conditions facilitates research to better identify existing FEWS linkages and how they function. The framework also enables a next stage of analysis to be pursued using future scenario pathways that will vary land use, technology deployments, regulatory objectives, and climate trends and extremes. It also supports a stakeholder engagement effort to co-design scenarios of interest beyond the research domain. 
    more » « less
  3. Buan, Nicole R. (Ed.)
    ABSTRACT Sideroxydans lithotrophicus ES-1 grows autotrophically either by Fe(II) oxidation or by thiosulfate oxidation, in contrast to most other isolates of neutrophilic Fe(II)-oxidizing bacteria (FeOB). This provides a unique opportunity to explore the physiology of a facultative FeOB and constrain the genes specific to Fe(II) oxidation. We compared the growth of S. lithotrophicus ES-1 on Fe(II), thiosulfate, and both substrates together. While initial growth rates were similar, thiosulfate-grown cultures had higher yield with or without Fe(II) present, which may give ES-1 an advantage over obligate FeOB. To investigate the Fe(II) and S oxidation pathways, we conducted transcriptomics experiments, validated with reverse transcription-quantitative PCR (RT-qPCR). We explored the long-term gene expression response at different growth phases (over days to a week) and expression changes during a short-term switch from thiosulfate to Fe(II) (90 min). The dsr and sox sulfur oxidation genes were upregulated in thiosulfate cultures. The Fe(II) oxidase gene cyc2 was among the top expressed genes during both Fe(II) and thiosulfate oxidation, and addition of Fe(II) to thiosulfate-grown cells caused an increase in cyc2 expression. These results support the role of Cyc2 as the Fe(II) oxidase and suggest that ES-1 maintains readiness to oxidize Fe(II), even in the absence of Fe(II). We used gene expression profiles to further constrain the ES-1 Fe(II) oxidation pathway. Notably, among the most highly upregulated genes during Fe(II) oxidation were genes for alternative complex III, reverse electron transport, and carbon fixation. This implies a direct connection between Fe(II) oxidation and carbon fixation, suggesting that CO 2 is an important electron sink for Fe(II) oxidation. IMPORTANCE Neutrophilic FeOB are increasingly observed in various environments, but knowledge of their ecophysiology and Fe(II) oxidation mechanisms is still relatively limited. Sideroxydans isolates are widely observed in aquifers, wetlands, and sediments, and genome analysis suggests metabolic flexibility contributes to their success. The type strain ES-1 is unusual among neutrophilic FeOB isolates, as it can grow on either Fe(II) or a non-Fe(II) substrate, thiosulfate. Almost all our knowledge of neutrophilic Fe(II) oxidation pathways comes from genome analyses, with some work on metatranscriptomes. This study used culture-based experiments to test the genes specific to Fe(II) oxidation in a facultative FeOB and refine our model of the Fe(II) oxidation pathway. We gained insight into how facultative FeOB like ES-1 connect Fe, S, and C biogeochemical cycling in the environment and suggest a multigene indicator would improve understanding of Fe(II) oxidation activity in environments with facultative FeOB. 
    more » « less
  4. Abstract

    The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave‐assisted reaction of citric acid and ethylenediamine was investigated by13C,13C{1H},1H─13C,13C{14N}, and15N solid‐state nuclear magnetic resonance (NMR) experiments.13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases.15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2at 155 ppm, and two distinctive15N NMR resonances near 80 and 160 ppm proved the presence of 5‐oxo‐1,2,3,5‐tetrahydroimidazo[1,2‐a]pyridine‐7‐carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross‐peaks in a1H─13C HETCOR spectrum with brief1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative13C and15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in13C chemical‐shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.

     
    more » « less
  5. null (Ed.)
    This mixed-method study examined the experiences of college students during the COVID- 19 pandemic through surveys, experience sampling data collected over two academic quar- ters (Spring 2019 n1 = 253; Spring 2020 n2 = 147), and semi-structured interviews with 27 undergraduate students. There were no marked changes in mean levels of depressive symptoms, anxiety, stress, or loneliness between 2019 and 2020, or over the course of the Spring 2020 term. Students in both the 2019 and 2020 cohort who indicated psychosocial vulnerability at the initial assessment showed worse psychosocial functioning throughout the entire Spring term relative to other students. However, rates of distress increased faster in 2020 than in 2019 for these individuals. Across individuals, homogeneity of variance tests and multi-level models revealed significant heterogeneity, suggesting the need to examine not just means but the variations in individuals’ experiences. Thematic analysis of interviews characterizes these varied experiences, describing the contexts for students’ challenges and strategies. This analysis highlights the interweaving of psychosocial and academic dis- tress: Challenges such as isolation from peers, lack of interactivity with instructors, and diffi- culty adjusting to family needs had both an emotional and academic toll. Strategies for adjusting to this new context included initiating remote study and hangout sessions with peers, as well as self-learning. In these and other strategies, students used technologies in different ways and for different purposes than they had previously. Supporting qualitative insight about adaptive responses were quantitative findings that students who used more problem-focused forms of coping reported fewer mental health symptoms over the course of the pandemic, even though they perceived their stress as more severe. These findings underline the need for interventions oriented towards problem-focused coping and suggest opportunities for peer role modeling. 
    more » « less