skip to main content

This content will become publicly available on June 22, 2022

Title: Evaluating Coupling Models for Cloud Datacenters and Power Grids
The rapid growth of datacenter (DC) loads can be leveraged to help meet renewable portfolio standard (RPS, renewable fraction)targets in power grids. The ability to manipulate DC loads over time(shifting) provides a mechanism to deal with temporal mismatch between non-dispatchable renewable generation (e.g. wind and solar) and overall grid loads, and this flexibility ultimately facilitates the absorption of renewables and grid decarbonization. To this end, we study DC-grid coupling models, exploring their impact on grid dispatch, renewable absorption, power prices, and carbon emissions.With a detailed model of grid dispatch, generation, topology, and loads, we consider three coupling approaches: fixed, datacenter-local optimization (online dynamic programming), and grid-wide optimization (optimal power flow). Results show that understanding the effects of dynamic DC load management requires studies that model the dynamics of both load and power grid. Dynamic DC-grid coupling can produce large improvements: (1) reduce grid dispatch cost (-3%), (2) increase grid renewable fraction (+1.58%), and (3) reduce DC power cost (-16.9%).It also has negative effects: (1) increase cost for both DCs and non-DC customers, (2) differentially increase prices for non-DC customers, and (3) create large power-level changes that may harm DC productivity.
Authors:
; ;
Editors:
Ardakanian, Omid; Niesse, Astrid
Award ID(s):
1901466 1832230 1832208
Publication Date:
NSF-PAR ID:
10253552
Journal Name:
InThe TwelfthACM International Conference on Future Energy Systems (e-Energy ’21),
Page Range or eLocation-ID:
171 to 184
Sponsoring Org:
National Science Foundation
More Like this
  1. The intermittent nature of renewable energy generation implies that renewable producers rely on non-renewable producers to ensure the aggregate power delivered meets the promised quality of service. Therefore, the intermittent nature of renewable energy generation affects the committed power and market price of energy. We consider an electricity market where renewable and non-renewable generators bid by proposing their asking price per unit of energy to an independent system operator (ISO). The ISO solves a dispatch optimization problem to minimize the cost of purchased energy on behalf of the consumers. We incorporate the notion of net-load variance using the Conditional Value-at-Riskmore »(CVAR) measure in the dispatch optimization problem to ensure that the generators are able to meet the load within a desired confidence level. We analytically derive the market clearing price of energy and dispatched powers as a function of CVAR and show that a higher penetration of renewable energies may increase the market clearing price of energy. Finally, we present descriptive simulations to illustrate the impact of renewable energy penetration on the market price of energy.« less
  2. Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DCmore »power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated.« less
  3. Electrification of vehicles is becoming one of the main avenues for decarbonization of the transportation market. To reduce stress on the energy grid, large-scale charging will require optimal scheduling of when electricity is delivered to vehicles. Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the power system as well as reduce system costs and emissions. However, a challenge for successful introduction of coordinated deadline-scheduling of residential charging comes from the demand side: customers would need to be willing both to defer charging their vehicles and to accept less than a 100% target for battery charge.more »Within a coordinated electric-vehicle charging pilot run by the local utility in upstate New York, this study analyzes the necessary incentives for customers to accept giving up control of when charging of their vehicles takes place. Using data from a choice experiment implemented in an online survey of electric-vehicle owners and lessees in upstate New York (N=462), we make inference on the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs. To address unobserved preference heterogeneity, we apply Variational Bayes (VB) inference to a mixed logit model. Stochastic variational inference has recently emerged as a fast and computationally-efficient alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian estimation of discrete choice models. Our results show that individuals negatively perceive the duration of the timeframe in which the energy provider would be allowed to defer charging, even though both the desired target for battery charge and deadline would be respected. This negative monetary valuation is evidenced by an expected average reduction in the annual fee of joining the charging program of $2.64 per hour of control yielded to the energy provider. Our results also provide evidence of substantial heterogeneity in preferences. For example, the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of control yielded to the utility is $5.16. However, the negative valuation of the timeframe for deferring charging is compensated by positive valuation of emission savings coming from switching charging to periods of the day with a higher proportion of generation from renewable sources. Customers also positively valued discounts in the price of energy delivery.« less
  4. This paper presents a multi-objective (MO) optimization for economic/emission dispatch (EED) problem incorporating hydrothermal plants, wind power generation, energy storage systems (ESSs) and responsive loads. The uncertain behavior of wind turbines and electric loads is modeled by scenarios. Stochastic programming is proposed to achieve the expected cost and emission production. Moreover, the carbon capture systems are considered to lower the level of carbon emission produced by conventional thermal units. The proposed optimization problem is tested on the IEEE 24-bus case study using DC power flow calculation. The optimal Pareto frontier is obtained, and a fuzzy decision-making tool determined the bestmore »solution among obtained Pareto points. The problem is modeled as mixed-integer non-linear programming in the General Algebraic Modelling System (GAMS) and solved using DICOPT solver.« less
  5. The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage robust SCUC, one through a fixed and the othermore »via an adjustable uncertainty set, for which the state-of-the-art techniques may not be always feasible, efficient, and practical. To address these concerns and to account for the effects of the uncertainty cost resulting from dispatch limitations of flexible resources, a new framework centered on the adjustable penetration of stochastic generation is proposed. Our hypothesis is that if the SCUC is scheduled with an appropriate dispatch level of stochastic generation, the system uncertainty cost will decrease, and subsequently, the system's ability to accommodate additional uncertainty will improve. Numerical simulations on a modified IEEE 73-bus test system verify the efficiency of the suggested assessment techniques.« less