Abstract It has been hypothesized that environmentally induced changes to gene body methylation could facilitate adaptive transgenerational responses to changing environments.We compared patterns of global gene expression (Tag‐seq) and gene body methylation (reduced representation bisulfite sequencing) in 80 eastern oystersCrassostrea virginicafrom six full‐sib families, common gardened for 14 months at two sites in the northern Gulf of Mexico that differed in mean salinity.At the time of sampling, oysters from the two sites differed in mass by 60% and in parasite loads by nearly two orders of magnitude. They also differentially expressed 35% of measured transcripts. However, we observed differential methylation at only 1.4% of potentially methylated loci in comparisons between individuals from these different environments, and little correspondence between differential methylation and differential gene expression.Instead, methylation patterns were largely driven by genetic differences among families, with a PERMANOVA analysis indicating nearly a two orders of magnitude greater number of genes differentially methylated between families than between environments.An analysis of CpG observed/expected values (CpG O/E) across theC.virginicagenome showed a distinct bimodal distribution, with genes from the first cluster showing the lower CpG O/E values, greater methylation and higher and more stable gene expression, while genes from the second cluster showed lower methylation, and lower and more variable gene expression.Taken together, the differential methylation results suggest that only a small portion of theC.virginicagenome is affected by environmentally induced changes in methylation. At this point, there is little evidence to suggest that environmentally induced methylation states would play a leading role in regulating gene expression responses to new environments.
more »
« less
Genome‐wide DNA methylation dynamics following recent polyploidy in the allotetraploid Tragopogon miscellus (Asteraceae)
Summary Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome‐wide expression of duplicated genes remain largely unknown. Here, we useTragopogon(Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids.The naturally occurring allotetraploidTragopogon miscellusformed in the last 95–100 yr from parental diploidsTragopogon dubiusandT. pratensis. We profiled the DNA methylomes of these three species using whole‐genome bisulfite sequencing.Genome‐wide methylation levels inT. miscelluswere intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized.This study provides the first assessment of both overall and locus‐specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.
more »
« less
- PAR ID:
- 10494506
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 242
- Issue:
- 3
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 1363-1376
- Size(s):
- p. 1363-1376
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Differential methylation of imprinting control regions in mammals is essential for distinguishing the parental alleles from each other and regulating their expression accordingly. To ensure parent of origin-specific expression of imprinted genes and thereby normal developmental progression, the differentially methylated states that are inherited at fertilization must be stably maintained by DNA methyltransferase 1 throughout subsequent somatic cell division. Further epigenetic modifications, such as the acquisition of secondary regions of differential methylation, are dependent on the methylation status of imprinting control regions and are important for achieving the monoallelic expression of imprinted genes, but little is known about how imprinting control regions direct the acquisition and maintenance of methylation at these secondary sites. Recent analysis has identified mutations that reduce DNA methyltransferase 1 fidelity at some genomic sequences but not at others, suggesting that it may function differently at different loci. We examined the impact of the mutant DNA methyltransferase 1 P allele on methylation at imprinting control regions as well as at secondary differentially methylated regions and non-imprinted sequences. We found that while the P allele results in a major reduction in DNA methylation levels across the mouse genome, methylation is specifically maintained at imprinting control regions but not at their corresponding secondary DMRs. This result suggests that DNA methyltransferase 1 may work differently at imprinting control regions or that there is an alternate mechanism for maintaining methylation at these critical regulatory regions and that maintenance of methylation at secondary DMRs is not solely dependent on the methylation status of the ICR.more » « less
-
SUMMARY Medicago truncatulais a model legume for fundamental research on legume biology and symbiotic nitrogen fixation.Tnt1, a retrotransposon from tobacco, was used to generate insertion mutants inM. truncatulaR108. Approximately 21 000 insertion lines have been generated and publicly available.Tnt1retro‐transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE ofM. truncatulaR108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2‐kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site ofTnt1insertions inM. truncatulaR108 and stronger hypermethylation of genes correlated with higher number ofTnt1insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and theTnt1retrotransposition correlates with the hyperactive methylation regions.more » « less
-
Summary Processes affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co‐maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization.Here, we investigate genic variation in epigenome‐associated polymorphism rates inArabidopsis thalianaand consider whether these affect the evolution of gene duplicates. We compared the frequency of sequence polymorphism and patterns of genetic differentiation between genes classified by exon methylation patterns: unmethylated (unM), gene‐body methylated (gbM), and transposon‐like methylated (teM) states, which reflect divergence in gene expression.We found that the frequency of polymorphism was higher in teM (transcriptionally repressed, tissue‐specific) genes and lower in gbM (active, constitutively expressed) genes. Comparisons of gene duplicates were largely consistent with genome‐wide patterns – gene copies that exhibit teM accumulate more variation, evolve faster, and are in chromatin states associated with reduced DNA repair.This relationship between expression, the epigenome, and polymorphism may lead to the breakdown of equilibrium states that would otherwise maintain genetic redundancies. Epigenome‐mediated polymorphism rate variation may facilitate the evolution of novel gene functions in duplicate paralogs maintained over evolutionary time.more » « less
-
Abstract Background Mutations in LMNA , encoding lamin A/C, lead to a variety of diseases known as laminopathies including dilated cardiomyopathy (DCM) and skeletal abnormalities. Though previous studies have investigated the dysregulation of gene expression in cells from patients with DCM, the role of epigenetic (gene regulatory) mechanisms, such as DNA methylation, has not been thoroughly investigated. Furthermore, the impact of family-specific LMNA mutations on DNA methylation is unknown. Here, we performed reduced representation bisulfite sequencing on ten pairs of fibroblasts and their induced pluripotent stem cell (iPSC) derivatives from two families with DCM due to distinct LMNA mutations, one of which also induces brachydactyly. Results Family-specific differentially methylated regions (DMRs) were identified by comparing the DNA methylation landscape of patient and control samples. Fibroblast DMRs were found to enrich for distal regulatory features and transcriptionally repressed chromatin and to associate with genes related to phenotypes found in tissues affected by laminopathies. These DMRs, in combination with transcriptome-wide expression data and lamina-associated domain (LAD) organization, revealed the presence of inter-family epimutation hotspots near differentially expressed genes, most of which were located outside LADs redistributed in LMNA -related DCM. Comparison of DMRs found in fibroblasts and iPSCs identified regions where epimutations were persistent across both cell types. Finally, a network of aberrantly methylated disease-associated genes revealed a potential molecular link between pathways involved in bone and heart development. Conclusions Our results identified both shared and mutation-specific laminopathy epimutation landscapes that were consistent with lamin A/C mutation-mediated epigenetic aberrancies that arose in somatic and early developmental cell stages.more » « less
An official website of the United States government
