Numerical integration of the stiffness matrix in higher-order finite element (FE) methods is recognized as one of the heaviest computational tasks in an FE solver. The problem becomes even more relevant when computing the Gram matrix in the algorithm of the Discontinuous Petrov Galerkin (DPG) FE methodology. Making use of 3D tensor-product shape functions, and the concept of sum factorization, known from standard high-order FE and spectral methods, here we take advantage of this idea for the entire exact sequence of FE spaces defined on the hexahedron. The key piece to the presented algorithms is the exact sequence for the one-dimensional element, and use of hierarchical shape functions. Consistent with existing results, the presented algorithms for the integration of H1, H(curl), H(div), and L2 inner products, have the O(p7) computational complexity in contrast to the O(p9) cost of conventional integration routines. Use of Legendre polynomials for shape functions is critical in this implementation. Three boundary value problems under different variational formulations, requiring combinations of H1, H(div) and H(curl) test shape functions, were chosen to experimentally assess the computation time for constructing DPG element matrices, showing good correspondence with the expected rates.
more »
« less
Evaluation of Inner Products of Implicitly Defined Finite Element Functions on Multiply Connected Planar Mesh Cells
In recent years, there has been significant interest in the development of finite element methods defined on meshes that include rather general polytopes and curvilinear polygons. In the present work, we provide tools necessary to employ multiply connected mesh cells in planar domains, i.e., cells with holes, in finite element computations. Our focus is efficient evaluation of the \(H^1\) semi-inner product and \(L^2\) inner product of implicitly defined finite element functions of the types arising in boundary element based finite element methods and virtual element methods. Such functions are defined as solutions of Poisson problems having a polynomial source term and continuous boundary data. We show that the integrals of interest can be reduced to integrals along the boundaries of mesh cells, thereby avoiding the need to perform any computations in cell interiors. The dominating cost of this reduction is solving a relatively small Nyström system to obtain a Dirichlet-to-Neumann map, as well as the solution of two more Nyström systems to obtain an “anti-Laplacian” of a harmonic function, which is used for computing the \(L^2\) inner product. Several numerical examples demonstrate the high-order accuracy of this approach. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at both https://github.com/samreynoldsmath/PuncturedFEM and the supplementary materials (PuncturedFEM\_v0\_2\_5.zip [1.75MB]).
more »
« less
- PAR ID:
- 10494566
- Publisher / Repository:
- Society for Industrial and Applied Mathematics
- Date Published:
- Journal Name:
- SIAM Journal on Scientific Computing
- Volume:
- 46
- Issue:
- 1
- ISSN:
- 1064-8275
- Page Range / eLocation ID:
- A338 to A359
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Boundary element methods (BEM) have been successfully applied towards solving a broad array of complicated electromagnetic problems. Most BEM approaches rely on flat triangular discretizations and discretization via the Method of Moments (MoM) and low-order basis functions. Although more complicated from an implementation standpoint, it has been shown that high-order methods based on curvilinear patch mesh discretizations can significantly outperform low-order MoM in both accuracy and computational efficiency. In this work, we review a new high-order Nyström method based on using Chebyshev basis functions with curvilinear elements that we have recently developed, present a few scattering examples, and discuss related on-going and future work.more » « less
-
For a given PDE problem, three main factors affect the accuracy of FEM solutions: basis order, mesh resolution, and mesh element quality. The first two factors are easy to control, while controlling element shape quality is a challenge, with fundamental limitations on what can be achieved. We propose to use p-refinement (increasing element degree) to decouple the approximation error of the finite element method from the domain mesh quality for elliptic PDEs. Our technique produces an accurate solution even on meshes with badly shaped elements, with a slightly higher running time due to the higher cost of high-order elements. We demonstrate that it is able to automatically adapt the basis to badly shaped elements, ensuring an error consistent with high-quality meshing, without any per-mesh parameter tuning. Our construction reduces to traditional fixed-degree FEM methods on high-quality meshes with identical performance. Our construction decreases the burden on meshing algorithms, reducing the need for often expensive mesh optimization and automatically compensates for badly shaped elements, which are present due to boundary con- straints or limitations of current meshing methods. By tackling mesh gen- eration and finite element simulation jointly, we obtain a pipeline that is both more efficient and more robust than combinations of existing state of the art meshing and FEM algorithms.more » « less
-
Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.more » « less
-
Efficiently and accurately simulating partial differential equations (PDEs) in and around arbitrarily defined geometries, especially with high levels of adaptivity, has significant implications for different application domains. A key bottleneck in the above process is the fast construction of a ‘good’ adaptively-refined mesh. In this work, we present an efficient novel octree-based adaptive discretization approach capable of carving out arbitrarily shaped void regions from the parent domain: an essential requirement for fluid simulations around complex objects. Carving out objects produces an incomplete octree. We develop efficient top-down and bottom-up traversal methods to perform finite element computations on incomplete octrees. We validate the framework by (a) showing appropriate convergence analysis and (b) computing the drag coefficient for flow past a sphere for a wide range of Reynolds numbers (0(1-10 6 )) encompassing the drag crisis regime. Finally, we deploy the framework on a realistic geometry on a current project to evaluate COVID-19 transmission risk in classrooms.more » « less
An official website of the United States government

