Product disassembly is essential for remanufacturing operations and recovery of end-of-use devices. However, disassembly has often been performed manually with significant safety issues for human workers. Recently, human-robot collaboration has become popular to reduce the human workload and handle hazardous materials. However, due to the current limitations of robots, they are not fully capable of performing every disassembly task. It is critical to determine whether a robot can accomplish a specific disassembly task. This study develops a disassembly score which represents how easy is to disassemble a component by robots, considering the attributes of the component along with the robotic capability. Five factors, including component weight, shape, size, accessibility, and positioning, are considered when developing the disassembly score. Further, the relationship between the five factors and robotic capabilities, such as grabbing and placing, is discussed. The MaxViT (Multi-Axis Vision Transformer) model is used to determine component sizes through image processing of the XPS 8700 desktop, demonstrating the potential for automating disassembly score generation. Moreover, the proposed disassembly score is discussed in terms of determining the appropriate work setting for disassembly operations, under three main categories: human-robot collaboration (HRC), semi-HRC, and worker-only settings. A framework for calculating disassembly time, considering human-robot collaboration, is also proposed.
more »
« less
Teleoperator-Robot-Human Interaction in Manufacturing: Perspectives from Industry, Robot Manufacturers, and Researchers
Background: The increasing prevalence of robots in industrial environments is attributed in part to advancements in collaborative robot technologies, enabling robots to work in close proximity to humans. Simultaneously, the rise of teleoperation, involving remote robot control, poses unique opportunities and challenges for human-robot collaboration (HRC) in diverse and distributed workspaces. Purpose: There is not yet a comprehensive understanding of HRC in teleoperation, specifically focusing on collaborations involving the teleoperator, the robot, and the local or onsite workers in industrial settings, here referred to as teleoperator-robot-human collaboration (tRHC). We aimed to identify opportunities, challenges, and potential applications of tRHC through insights provided from industry stakeholders, thereby supporting effective future industrial implementations. Methods: Thirteen stakeholders in robotics, specializing in different domains (i.e., safety, robot manufacturing, aerospace/automotive manufacturing, and supply chains), completed semi-structured interviews that focused on exploring diverse aspects relevant to tRHC. The interviews were then transcribed and thematic analysis was applied to group responses into broader categories, which were further compared across stakeholder industries. Results We identified three main categories and 13 themes from the interviews. These categories include Benefits, Concerns, and Technical Challenges. Interviewees highlighted accessibility, ergonomics, flexibility, safety, time & cost saving, and trust as benefits of tRHC. Concerns raised encompassed safety, standards, trust, and workplace optimization. Technical challenges consisted of critical issues such as communication time delays, the need for high dexterity in robot manipulators, the importance of establishing shared situational awareness among all agents, and the potential of augmented and virtual reality in providing immersive control interfaces. Conclusions: Despite important challenges, tRHC could offer unique benefits, facilitating seamless collaboration among the teleoperator, teleoperated robot(s), and onsite workers across physical and geographic boundaries. To realize such benefits and address the challenges, we propose several research directions to further explore and develop tRHC capabilities.
more »
« less
- Award ID(s):
- 2222468
- PAR ID:
- 10494586
- Publisher / Repository:
- Taylor and Francis Online
- Date Published:
- Journal Name:
- IISE Transactions on Occupational Ergonomics and Human Factors
- ISSN:
- 2472-5838
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Robotic automation in construction has created the need for new competencies that will enable the workforce to engage with robots safely and effectively. However, differing perceptions between industry professionals and academia make aligning academic programs with industry needs challenging. This study evaluates these perceptions to guide the design of HRC training programs. A three-round Delphi study was conducted separately with panels of industry professionals and academic experts to assess their views on HRC competencies in construction. The findings revealed that both panels identified human–robot interfaces, HRC safety and standards, robot control systems, and construction robot applications as the top five HRC knowledge areas. Industry professionals also emphasized task planning knowledge, while academic experts focused on HRC ethics. Key HRC skills include effective communication, safety management, technical proficiency, and compliance with regulations and standards, with industry professionals prioritizing proficiency in task planning and academics emphasizing human–robot interface proficiency. Both expert panels prioritized teamwork, continuous learning, problem-solving, communication, and adaptability as top-rated HRC abilities. This study contributes to knowledge by defining key HRC competencies and identifying differences in priorities between industry and academia. These insights can guide the development of academic curricula that better align with industry needs, supporting the creation of training programs that equip the workforce with the competencies required for safe and effective robotic collaboration. The study also promotes collaboration between industry and academia, fostering innovation in HRC and robotics in construction. Future research directions are proposed to explore innovative training methods to equip the future workforce with HRC competencies.more » « less
-
Abstract Product disassembly plays a crucial role in the recycling, remanufacturing, and reuse of end-of-use (EoU) products. However, the current manual disassembly process is inefficient due to the complexity and variation of EoU products. While fully automating disassembly is not economically viable given the intricate nature of the task, there is potential in using human–robot collaboration (HRC) to enhance disassembly operations. HRC combines the flexibility and problem-solving abilities of humans with the precise repetition and handling of unsafe tasks by robots. Nevertheless, numerous challenges persist in technology, human workers, and remanufacturing work, which require comprehensive multidisciplinary research to address critical gaps. These challenges have motivated the authors to provide a detailed discussion on the opportunities and obstacles associated with introducing HRC to disassembly. In this regard, the authors have conducted a review of the recent progress in HRC disassembly and present the insights gained from this analysis from three distinct perspectives: technology, workers, and work.more » « less
-
Robots present an innovative solution to the construction industry’s challenges, including safety concerns, skilled worker shortages, and productivity issues. Successfully collaborating with robots requires new competencies to ensure safety, smooth interaction, and accelerated adoption of robotic technologies. However, limited research exists on the specific competencies needed for human—robot collaboration in construction. Moreover, the perspectives of construction industry professionals on these competencies remain underexplored. This study examines the perceptions of construction industry professionals regarding the knowledge, skills, and abilities necessary for the effective implementation of human—robot collaboration in construction. A two-round Delphi survey was conducted with expert panel members from the construction industry to assess their views on the competencies for human—robot collaboration. The results reveal that the most critical competencies include knowledge areas such as human—robot interface, construction robot applications, human—robot collaboration safety and standards, task planning and robot control system; skills such as task planning, safety management, technical expertise, human—robot interface, and communication; and abilities such as safety awareness, continuous learning, problemsolving, critical thinking, and spatial awareness. This study contributes to knowledge by identifying the most significant competencies for human—robot collaboration in construction and highlighting their relative importance. These competencies could inform the design of educational and training programs and facilitate the integration of robotic technologies in construction. The findings also provide a foundation for future research to further explore and enhance these competencies, ultimately supporting safer, more efficient, and more productive construction practices.more » « less
-
This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with AI-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human–robot teamwork, understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining the effectiveness of human–robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration of AI-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, cultivation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed that safety and reliability are significant factors for the adoption of AI-powered cobots in construction. Fear of being replaced resulting from the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals workers’ welfare.more » « less
An official website of the United States government

