skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polyurea–Graphene Nanocomposites—The Influence of Hard-Segment Content and Nanoparticle Loading on Mechanical Properties
Polyurethane and polyurea-based adhesives are widely used in various applications, from automotive to electronics and medical applications. The adhesive performance depends strongly on its composition, and developing the formulation–structure–property relationship is crucial to making better products. Here, we investigate the dependence of the linear viscoelastic properties of polyurea nanocomposites, with an IPDI-based polyurea (PUa) matrix and exfoliated graphene nanoplatelet (xGnP) fillers, on the hard-segment weight fraction (HSWF) and the xGnP loading. We characterize the material using scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). It is found that changing the HSWF leads to a significant variation in the stiffness of the material, from about 10 MPa for 20% HSWF to about 100 MPa for 30% HSWF and about 250 MPa for the 40% HSWF polymer (as measured by the tensile storage modulus at room temperature). The effect of the xGNP loading was significantly more limited and was generally within experimental error, except for the 20% HSWF material, where the xGNP addition led to about an 80% increase in stiffness. To correctly interpret the DMA results, we developed a new physics-based rheological model for the description of the storage and loss moduli. The model is based on the fractional calculus approach and successfully describes the material rheology in a broad range of temperatures (−70 °C–+70 °C) and frequencies (0.1–100 s−1), using only six physically meaningful fitting parameters for each material. The results provide guidance for the development of nanocomposite PUa-based materials.  more » « less
Award ID(s):
1923201
PAR ID:
10494623
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Polymers
Volume:
15
Issue:
22
ISSN:
2073-4360
Page Range / eLocation ID:
4434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Segmented polyureas (PUa) are industrially important class of polymers widely used in coatings, sealant, and adhesive applications. Here, we report synthesis, characterization, and modeling of Isophorone Diisocyanate‐Diethyl‐Toluene‐Diamine‐Polyether amine (IPDI‐DETDA‐PO PUa) with varied hard segment contents of 20, 30, and 40 weight percent. For each of the three materials, we study its structure and phase behavior using FTIR, DSC, and TEM, and clearly show the presence of microphase separation between the hard and soft nanodomains. We then measure the linear viscoelastic response of the PUa‐s using DMA (frequency sweeps at multiple temperatures). The DMA data are shown to obey the time‐temperature superposition. Finally, we develop a new micromechanical model describing the DMA results; the model describes a phase‐separated PUa as two “Fractional‐order Maxwell gels” branches, connected in parallel, with the first FMG branch representing the “percolated hard phase and the second one modeling the “filled soft phase. In agreement with the earlier thermodynamic theories, the volume‐fraction of the percolated hard phase is related to the hard segment weight‐fraction (HSWF), defined as the combined mass of IPDI and DETDA normalized to the total mass of the polymer. The data and model are found to be in a good qualitative and quantitative agreement. 
    more » « less
  2. The equine hoof wall has outstanding impact resistance, which enables high-velocity gallop over hard terrain with minimum damage. To better understand its viscoelastic behavior, complex moduli were de- termined using two complementary techniques: conventional ( ∼5 mm length scale) and nano ( ∼1 μm length scale) dynamic mechanical analysis (DMA). The evolution of their magnitudes was measured for two hydration conditions: fully hydrated and ambient. The storage modulus of the ambient hoof wall was approximately 400 MPa in macro-scale experiments, decreasing to ∼250 MPa with hydration. In contrast, the loss tangent decreased for both hydrated ( ∼0.1–0.07) and ambient ( ∼0.04–0.01) conditions, over the frequency range of 1–10 Hz. Nano-DMA indentation tests conducted up to 200 Hz showed little frequency dependence beyond 10 Hz. The loss tangent of tubular regions showed more hydration sensitivity than in intertubular regions, but no significant difference in storage modulus was observed. Loss tangent and effective stiffness were higher in indentations for both hydration levels. This behavior is attributed to the hoof wall’s hierarchical structure, which has porosity, functionally graded aspects, and material interfaces that are not captured at the scale of indentation. The hoof wall’s viscoelasticity characterized in this work has implications for the design of bioinspired impact-resistant materials and structures. 
    more » « less
  3. null (Ed.)
    The search for alternative feedstocks to replace petrochemical polymers has centered on plant-derived monomer feedstocks. Alternatives to agricultural feedstock production should also be pursued, especially considering the ecological damage caused by modern agricultural practices. Herein, l -tyrosine produced on an industrial scale by E. coli was derivatized with olefins to give tetraallyltyrosine. Tetraallyltyrosine was subsequently copolymerized via its inverse vulcanization with industrial by-product elemental sulfur in two different comonomer ratios to afford highly-crosslinked network copolymers TTSx ( x = wt% sulfur in monomer feed). TTSx copolymers were characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis (DMA). DMA was employed to assess the viscoelastic properties of TTSx through the temperature dependence of the storage modulus, loss modulus and energy damping ability. Stress–strain analysis revealed that the flexural strength of TTSx copolymers (>6.8 MPa) is more than 3 MPa higher than flexural strengths for previously-tested inverse vulcanized biopolymer derivatives, and more than twice the flexural strength of some Portland cement compositions (which range from 3–5 MPa). Despite the high tyrosine content (50–70 wt%) in TTSx , the materials show no water-induced swelling or water uptake after being submerged for 24 h. More impressively, TTSx copolymers are highly resistant to oxidizing acid, with no deterioration of mechanical properties even after soaking in 0.5 M sulfuric acid for 24 h. The demonstration that these durable, chemically-resistant TTSx copolymers can be prepared from industrial by-product and microbially-produced monomers via a 100% atom-economical inverse vulcanization process portends their potential utility as sustainable surrogates for less ecofriendly materials. 
    more » « less
  4. In this research study, the fracture strength of flat 10 mm thick annealed glass sheets having an abrasive water-jet cut surface and bearing against a transparent interface material is experimentally investigated. The transparent interface material is necessary to provide axial-compressive force continuity in modular compression-dominant all- glass shell structures. A series of short glass columns were tested in axial compression under a variety of load cases, which included cyclic, creep, and monotonic-to-fracture loading. A target glass fracture bearing stress of 36.6 MPa is identified and represents an upper bound bearing stress for annealed glass compression members failing in a flexural buckling mode. The study concludes the transparent thermoplastic material, known as Surlyn, was able to achieve a fracture strength that exceeds the target value and that the fracture strength is not affected by cyclic or creep loading. Consequently, column-related failure limit states will occur before glass fracture is associated with interface bearing. Glass fracture occurs in Type-I mode, reflecting the presence of interface tensile stress. Furthermore, the monotonic bearing stiffness in the service range of 5 to 15 MPa is increased by 20 % and 16 % for samples subjected to cyclic and creep loading, respectively, relative to monotonic-only samples. 
    more » « less
  5. null (Ed.)
    We report a mechanical metamaterial-like behavior as a function of the micro/nanostructure of otherwise chemically identical aliphatic polyurea aerogels. Transmissibility varies dramatically with frequency in these aerogels. Broadband vibration mitigation is provided at low frequencies (500–1000 Hz) through self-assembly of locally resonant metastructures wherein polyurea microspheres are embedded in a polyurea web-like network. A micromechanical constitutive model based on a discrete element method is established to explain the vibration mitigation mechanism. Simulations confirm the metamaterial-like behavior with a negative dynamic material stiffness for the micro-metastructured aerogels in a much wider frequency range than the majority of previously reported locally resonant metamaterials. 
    more » « less