null
(Ed.)
We use classical cavity molecular dynamics simulations to investigate the effect of optical cavity environment on vibrational energy transfer and relaxation. For a small fraction of vibrationally hot CO2 molecules immersed in a liquid-phase CO2 thermal bath, in a cavity that supports a cavity mode in resonance with the CO asymmetric stretch vibration, forming collective vibrational strong coupling (VSC) and a cavity mode accelerates hot molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates (i) resonantly depend on the cavity mode detuning, (ii) cooperatively depend on Rabi splitting, and (iii) collectively scale with the number of hot molecules. This behavior weakens with increasing cavity size (at constant molecular density), that is, constant Rabi splitting) but remains meaningful up to cavities containing 10^4 molecules
more »
« less