skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Does the Pinatubo Eruption Influence Our Understanding of Long‐Term Changes in Ocean Biogeochemistry?
Abstract Pinatubo erupted during the first decadal survey of ocean biogeochemistry, embedding its climate fingerprint into foundational ocean biogeochemical observations and complicating the interpretation of long‐term biogeochemical change. Here, we quantify the influence of the Pinatubo climate perturbation on externally forced decadal and multi‐decadal changes in key ocean biogeochemical quantities using a large ensemble simulation of the Community Earth System Model designed to isolate the effects of Pinatubo, which cleanly captures the ocean biogeochemical response to the eruption. We find increased uptake of apparent oxygen utilization and preindustrial carbon over 1993–2003. Nearly 100% of the forced response in these quantities are attributable to Pinatubo. The eruption caused enhanced ventilation of the North Atlantic, as evidenced by deep ocean chlorofluorocarbon changes that appear 10–15 years after the eruption. Our results help contextualize observed change and contribute to improved constraints on uncertainty in the global carbon budget and ocean deoxygenation.  more » « less
Award ID(s):
1948664 1752724
PAR ID:
10494679
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Large volcanic eruptions drive significant climate perturbations through major anomalies in radiative fluxes and the resulting widespread cooling of the surface and upper ocean. Recent studies suggest that these eruptions also drive important variability in air‐sea carbon and oxygen fluxes. By simulating the Earth system using two initial‐condition large ensembles, with and without the aerosol forcing associated with the Mt. Pinatubo eruption in June 1991, we isolate the impact of this volcanic event on physical and biogeochemical properties of the ocean. The Mt. Pinatubo eruption forced significant anomalies in surface fluxes and the ocean interior inventories of heat, oxygen, and carbon. Pinatubo‐driven changes persist for multiple years in the upper ocean and permanently modify the ocean's heat, oxygen, and carbon inventories. Positive anomalies in oxygen concentrations emerge immediately post‐eruption and penetrate into the deep ocean. In contrast, carbon anomalies intensify in the upper ocean over several years post‐eruption, and are largely confined to the upper 150 m. In the tropics and northern high latitudes, the change in oxygen is dominated by surface cooling and subsequent ventilation to mid‐depths, while the carbon anomaly is associated with solubility changes and eruption‐generated El Niño—Southern Oscillation variability. We do not find significant impact of Pinatubo on oxygen or carbon fluxes in the Southern Ocean; but this may be due to Southern Hemisphere aerosol forcing being underestimated in Community Earth System Model 1 simulations. 
    more » « less
  2. The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen. 
    more » « less
  3. Abstract The ocean removes man-made (anthropogenic) carbon from the atmosphere and thereby mitigates climate change. Observations from global hydrographic surveys reveal the spatial and temporal evolution of the ocean inventory of anthropogenic carbon and suggest substantial decadal variability in historical storage rates. Here, we use a 100-member ensemble of an Earth system model to investigate the influence of external forcing and internal climate variability on historical changes in ocean anthropogenic carbon storage over 1994 to 2014. Our findings reveal that the externally forced, decadal changes in storage are largest in the Atlantic (2–4 mmol m−3decade−1) and positive nearly everywhere. Internal climate variability modulates regional ocean anthropogenic carbon storage trends by up to 10 mmol m−3decade−1. The influence of internal climate variability on decadal storage changes is most prominent at depths of ∼300 m and at the edges of the subtropical gyres. Internal variability in anthropogenic carbon in the extratropics has high spectral power on decadal to multi-decadal timescales, indicating that the approximately decadal repetitions of hydrographic surveys may produce storage change estimates that are heavily influenced by internal climate variability. 
    more » « less
  4. Abstract Volcanic eruptions can have significant climate impacts and serve as useful natural experiments for better understanding the effects of abrupt, externally forced climate change. Here, we investigate the Indian Ocean Dipole's (IOD) response to the largest tropical volcanic eruptions of the last millennium. Post‐eruption composites show a strong negative IOD developing in the eruption year, and a positive IOD the following year. The IOD and El Niño‐Southern Oscillation (ENSO) show a long‐term damped oscillatory response that can take up to 8 years to return to pre‐eruptive baselines. Moreover, the Interdecadal Pacific Oscillation (IPO) phase at the time of eruption controls the IOD response to intense eruptions, with negative (positive) IPO phasing favoring more negative (positive) IOD values via modulation of the background state of the eastern Indian Ocean thermocline depth. These results have important implications for climate risk in low‐likelihood, high‐impact scenarios, particularly in vulnerable communities unprepared for IOD and ENSO extremes. 
    more » « less
  5. Abstract The climate response to the Mt. Pinatubo volcanic eruption is analyzed using large ensembles of Coupled Model Intercomparison Project Phase 6 (CMIP6) historical simulations. In contrast to previous work, we find that standard measures of the global temperature response to volcanic forcing are not significantly correlated with climate sensitivity across models. Isolating the shortwave response due to non‐cloud effects does not improve the correlation with climate sensitivity. Earlier constraints on climate sensitivity based on the response to Mt. Pinatubo are consistent with having arisen by chance because of the small size of the ensembles used. Our results suggest that the response to Mt. Pinatubo cannot be used to constrain the climate sensitivity to increased greenhouse gas concentrations, as has been proposed, because the radiative feedbacks in response to volcanic eruptions are not well correlated with the feedbacks governing the long‐term response to greenhouse gas forcing. 
    more » « less