skip to main content


This content will become publicly available on January 1, 2025

Title: A Four-layer Cyber-physical Security Model for Electric Machine Drives considering Control Information Flow
Despite the IEEE Power Electronics Society (PELS) establishing Technical Committee 10 on Design Methodologies with a focus on the cyber-physical security of power electronics systems, a holistic design methodology for addressing security vulnerabilities remains underdeveloped. This gap largely stems from the limited integration of computer science and power/control engineering studies in this interdisciplinary field. Addressing the inadequacy of unilateral cyber or control perspectives, this paper presents a novel four-layer cyber-physical security model specifically designed for electric machine drives. Central to this model is the innovative Control Information Flow (CIF) model, residing within the control layer, which serves as a pivotal link between the cyber layer’s vulnerable resources and the physical layer’s state-space models. By mapping vulnerable resources to control variable space and tracing attack propagation, the CIF model facilitates accurate impact predictions based on tainted control laws. The effectiveness and validity of this proposed model are demonstrated through hardware experiments involving two typical cyber-attack scenarios, underscoring its potential as a comprehensive framework for multidisciplinary security strategies.  more » « less
Award ID(s):
2102032 2019311
NSF-PAR ID:
10494702
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Journal of Emerging and Selected Topics in Power Electronics
ISSN:
2168-6777
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing penetration of cyber systems into smart grids has resulted in these grids being more vulnerable to cyber physical attacks. The central challenge of higher order cyber-physical contingency analysis is the exponential blow-up of the attack surface due to a large number of attack vectors. This gives rise to computational challenges in devising efficient attack mitigation strategies. However, a system operator can leverage private information about the underlying network to maintain a strategic advantage over an adversary equipped with superior computational capability and situational awareness. In this work, we examine the following scenario: A malicious entity intrudes the cyber-layer of a power network and trips the transmission lines. The objective of the system operator is to deploy security measures in the cyber-layer to minimize the impact of such attacks. Due to budget constraints, the attacker and the system operator have limits on the maximum number of transmission lines they can attack or defend. We model this adversarial interaction as a resource-constrained attacker-defender game. The computational intractability of solving large security games is well known. However, we exploit the approximately modular behavior of an impact metric known as the disturbance value to arrive at a linear-time algorithm for computing an optimal defense strategy. We validate the efficacy of the proposed strategy against attackers of various capabilities and provide an algorithm for a real-time implementation. 
    more » « less
  2. Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodology for real-world implementation. 
    more » « less
  3. Cyber physical system (CPS) Critical infrastructures (CIs) like the power and energy systems are increasingly becoming vulnerable to cyber attacks. Mitigating cyber risks in CIs is one of the key objectives of the design and maintenance of these systems. These CPS CIs commonly use legacy devices for remote monitoring and control where complete upgrades are uneconomical and infeasible. Therefore, risk assessment plays an important role in systematically enumerating and selectively securing vulnerable or high-risk assets through optimal investments in the cybersecurity of the CPS CIs. In this paper, we propose a CPS CI security framework and software tool, CySec Game, to be used by the CI industry and academic researchers to assess cyber risks and to optimally allocate cybersecurity investments to mitigate the risks. This framework uses attack tree, attack-defense tree, and game theory algorithms to identify high-risk targets and suggest optimal investments to mitigate the identified risks. We evaluate the efficacy of the framework using the tool by implementing a smart grid case study that shows accurate analysis and feasible implementation of the framework and the tool in this CPS CI environment. 
    more » « less
  4. Most proposals for securing control systems are heuristic in nature, and while they increase the protection of their target, the security guarantees they provide are unclear. This paper proposes a new way of modeling the security guarantees of a Cyber-Physical System (CPS) against arbitrary false command attacks. As our main case study, we use the most popular testbed for control systems security. We first propose a detailed formal model of this testbed and then show how the original configuration is vulnerable to a single-actuator attack. We then propose modifications to the control system and prove that our modified system is secure against arbitrary, single-actuator attacks. 
    more » « less
  5. Recent technological advances provide the opportunities to bridge the physical world with cyber-space that leads to complex and multi-domain cyber physical systems (CPS) where physical systems are monitored and controlled using numerous smart sensors and cyber space to respond in real-time based on their operating environment. However, the rapid adoption of smart, adaptive and remotely accessible connected devices in CPS makes the cyberspace more complex and diverse as well as more vulnerable to multitude of cyber-attacks and adversaries. In this paper, we aim to design, develop and evaluate a distributed machine learning algorithm for adversarial resiliency where developed algorithm is expected to provide security in adversarial environment for critical mobile CPS. 
    more » « less