Security analyses for consensus protocols in blockchain research have primarily focused on the synchronous model, where point-to-point communication delays are upper bounded by a known finite constant. These models are unrealistic in noisy settings, where messages may be lost (i.e. incur infinite delay). In this work, we study the impact of message losses on the security of the proof-of-work longest-chain protocol. We introduce a new communication model to capture the impact of message loss called the 0-∞ model, and derive a region of tolerable adversarial power under which the consensus protocol is secure. The guarantees are derived as a simple bound for the probability that a transaction violates desired security properties. Specifically, we show that this violation probability decays almost exponentially in the security parameter. Our approach involves constructing combinatorial objects from blocktrees, and identifying random variables associated with them that are amenable to analysis. This approach improves existing bounds and extends the known regime for tolerable adversarial threshold in settings where messages may be lost.
more »
« less
Practical Settlement Bounds for Longest-Chain Consensus
Nakamoto’s longest-chain consensus paradigm now powers the bulk of the world’s cryptocurrencies and distributed finance infrastructure. An emblematic property of longest-chain consensus is that it provides probabilistic settlement guarantees that strengthen over time. This makes the exact relationship between settlement error and settlement latency a critical aspect of the protocol that both users and system designers must understand to make informed decisions. A recent line of work has finally provided a satisfactory rigorous accounting of this relationship for proof-of-work longest-chain protocols, but those techniques do not appear to carry over to the proof-of-stake setting.
This article develops a new analytic approach for establishing such settlement guarantees that yields explicit, rigorous settlement bounds for proof-of-stake longest-chain protocols, placing them on equal footing with their proof-of-work counterparts. Our techniques apply with some adaptations to the proof-of-work setting where they provide improvements to the state-of-the-art settlement bounds for proof-of-work protocols.
more »
« less
- Award ID(s):
- 2143058
- PAR ID:
- 10494782
- Publisher / Repository:
- Springer
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nakamoto proof-of-work ledger consensus currently underlies the majority of deployed cryptocurrencies and smart-contract blockchains. While a long and fruitful line of work has succeeded to identify its exact security region---that is, the set of parametrizations under which it possesses asymptotic security---the existing theory does not provide concrete settlement time guarantees that are tight enough to inform practice. In this work we provide a new approach for obtaining concrete and practical settlement time guarantees suitable for reasoning about deployed systems. We give an efficient method for computing explicit upper bounds on settlement time as a function of primary system parameters: honest and adversarial computational power and a bound on network delays. We implement this computational method and provide a comprehensive sample of concrete bounds for several settings of interest. We also analyze a well-known attack strategy to provide lower bounds on the settlement times. For Bitcoin, for example, our upper and lower bounds are within 90 seconds of each other for 1-hour settlement assuming 10 second network delays and a 10% adversary. In comparison, the best prior result has a gap of 2 hours in the upper and lower bounds with the same parameters.more » « less
-
Böhme, Rainer ; Kiffer, Lucianna (Ed.)Cryptographic Self-Selection is a common primitive underlying leader-selection for Proof-of-Stake blockchain protocols. The concept was first popularized in Algorand [Jing Chen and Silvio Micali, 2019], who also observed that the protocol might be manipulable. [Matheus V. X. Ferreira et al., 2022] provide a concrete manipulation that is strictly profitable for a staker of any size (and also prove upper bounds on the gains from manipulation). Separately, [Maryam Bahrani and S. Matthew Weinberg, 2024; Aviv Yaish et al., 2023] initiate the study of undetectable profitable manipulations of consensus protocols with a focus on the seminal Selfish Mining strategy [Eyal and Sirer, 2014] for Bitcoin’s Proof-of-Work longest-chain protocol. They design a Selfish Mining variant that, for sufficiently large miners, is strictly profitable yet also indistinguishable to an onlooker from routine latency (that is, a sufficiently large profit-maximizing miner could use their strategy to strictly profit over being honest in a way that still appears to the rest of the network as though everyone is honest but experiencing mildly higher latency. This avoids any risk of negatively impacting the value of the underlying cryptocurrency due to attack detection). We investigate the detectability of profitable manipulations of the canonical cryptographic self-selection leader selection protocol introduced in [Jing Chen and Silvio Micali, 2019] and studied in [Matheus V. X. Ferreira et al., 2022], and establish that for any player with α < (3-√5)/2 ≈ 0.38 fraction of the total stake, every strictly profitable manipulation is statistically detectable. Specifically, we consider an onlooker who sees only the random seed of each round (and does not need to see any other broadcasts by any other players). We show that the distribution of the sequence of random seeds when any player is profitably manipulating the protocol is inconsistent with any distribution that could arise by honest stakers being offline or timing out (for a natural stylized model of honest timeouts).more » « less
-
Blockchain technology that came with the introduction of Bitcoin offers many powerful use-cases while promising the establishment of distributed autonomous organizations (DAOs) that may transform our current understanding of client-server interactions on the cyberspace. They employ distributed consensus mechanisms that were subject to a lot of research in recent years. While most of such research focused on security and performance of consensus protocols, less attention was given to their incentive mechanisms which relate to a critical feature of blockchains. Unfortunately, while blockchains are advocating decentralized operations, they are not egalitarian due to existing incentive mechanisms. Many current consensus protocols inadvertently incentivize centralization of mining power and inequitable participation. This paper explores and evaluates alternative incentive mechanisms for a more decentralized and equitable participation. We first evaluate inequality in existing Proof of Stake (PoS) based incentive mechanisms, then we examine three alternatives in which rewards scheme is more partial to low-stakeholders. Through simulation, we show that two of our alternative mechanisms can reduce inequality and offer an attractive solution for sustainability of blockchain-based applications and DAOs.more » « less
-
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task. Arguably, its main impact has been in the setting of cryptocurrencies such as Bitcoin and its underlying blockchain protocol, which received significant attention in recent years due to its potential for various applications as well as for solving fundamental distributed computing questions in novel threat models. PoWs enable the linking of blocks in the blockchain data structure and thus the problem of interest is the feasibility of obtaining a sequence (chain) of such proofs. In this work, we examine the hardness of finding such chain of PoWs against quantum strategies. We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity. Effectively, this is an extension of a threshold direct product theorem to an average-case unstructured search problem. Our proof, adding to active recent efforts, simplifies and generalizes the recording technique of Zhandry (Crypto'19). As an application, we revisit the formal treatment of security of the core of the Bitcoin consensus protocol, the Bitcoin backbone (Eurocrypt'15), against quantum adversaries, while honest parties are classical and show that protocol's security holds under a quantum analogue of the classical “honest majority'' assumption. Our analysis indicates that the security of Bitcoin backbone is guaranteed provided the number of adversarial quantum queries is bounded so that each quantum query is worth O ( p − 1 / 2 ) classical ones, where p is the success probability of a single classical query to the protocol's underlying hash function. Somewhat surprisingly, the wait time for safe settlement in the case of quantum adversaries matches the safe settlement time in the classical case.more » « less