While a large body of literature suggests that students with Attention Deficit Hyperactivity Disorder (ADHD) possess significant creative and risk-taking potential, they remain highly underrepresented in engineering programs. High school students with ADHD have significantly lower GP As and are over eight times more likely to drop out than their peers without ADHD, which makes them significantly less likely to enter college engineering programs. To support the development of a more diverse engineering pipeline, this work summarizes outreach efforts to high school and middle school students with ADHD with the intention of boosting self-esteem and increasing interest in engineering.
more »
« less
Promoting Neurodiversity in Engineering Through Specialized Outreach Activities for Pre-college Students
While a large body of literature suggests that students with Attention Deficit Hyperactivity Disorder (ADHD) possess significant creative and risk-taking potential, they remain highly underrepresented in engineering programs. High school students with ADHD have significantly lower GPAs and are over eight times more likely to drop out than their peers without ADHD, which makes them significantly less likely to enter college engineering programs. To support the development of a more diverse engineering pipeline, this work summarizes outreach efforts to high school and middle school students with ADHD with the intention of boosting self-esteem and increasing interest in engineering.
more »
« less
- Award ID(s):
- 1653854
- PAR ID:
- 10494805
- Publisher / Repository:
- North American Business Press
- Date Published:
- Journal Name:
- Journal of higher education theory and practice
- Volume:
- 20
- Issue:
- 14
- ISSN:
- 2158-3595
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundCreativity is increasingly recognized as an important skill for success in the field of engineering, but most traditional, post‐secondary engineering education programs do not reward creative efforts. Failing to recognize creativity or creative efforts can have particularly negative effects for those students with attention deficit hyperactivity disorder (ADHD), who may exhibit enhanced divergent thinking ability yet struggle in the traditional educational environment. Purpose/HypothesisThis study was conducted to investigate how ADHD characteristics, academic aptitude, and one important component of creativity (divergent thinking) contribute to academic performance in engineering programs and how traditional markers of academic performance and ADHD characteristics predict divergent thinking. Design/MethodUndergraduate engineering students (n= 60) completed measures of ADHD symptoms and divergent thinking. Scholastic Aptitude Test (SAT) scores and grade point average (GPA) were collected from university records, and hypotheses were tested using a series of multivariate regression models. ResultsVerbal SAT scores were the only positive predictor of overall GPA and engineering GPA. ADHD characteristics did not significantly predict overall GPA but negatively predicted engineering GPA. ADHD characteristics were the only positive predictor of divergent thinking ability. ConclusionsADHD characteristics negatively predict academic performance (i.e., GPA) in engineering programs but are more predictive of divergent thinking ability than traditional markers of academic performance.more » « less
-
The STEM (science, technology, engineering, and mathematics) potential of youth with cognitive disabilities is often dismissed through problematic perceptions of STEM ability as natural and of youth with cognitive disabilities as unable. National data on more than 15,000 adolescents from the High School Longitudinal Study of 2009 first suggest that, among youth with disabilities, youth with medicated attention-deficit/hyperactivity disorder (ADHD) have the highest levels of STEM achievement, and youth with learning or intellectual disabilities typically have the lowest. Undergraduates with medicated ADHD or autism appear to be more likely to major in STEM than youth without cognitive disabilities, and youth with autism have the most positive STEM attitudes. Finally, results suggest that high school STEM achievement is more salient for college enrollment than STEM-positive attitudes across youth with most disability types, whereas attitudes are more salient than achievement for choosing a STEM major.more » « less
-
Using the nationally representative High School Longitudinal Study of 2009 (HSLS:09), this study documents that rural and small-town students were significantly less likely to enroll in postsecondary STEM (science, technology, engineering, and mathematics) degree programs, compared with their suburban peers. This study also shows that schools attended by rural and small-town students offered limited access to advanced coursework and extracurricular programs in STEM and had lower STEM teaching capacity. Those opportunities to learn in STEM were linked to the widening geographic gaps in STEM academic preparation. Overall, our findings suggest that during high school rural and small-town students shifted away from STEM fields and that geographic disparities in postsecondary STEM participation were largely explained by students’ demographics and precollege STEM career aspirations and academic preparation.more » « less
-
null (Ed.)Research Experience for Teachers (RET) programs are National Science Foundation (NSF) funded programs designed to provide K- 12 Science, Technology, Engineering, and Mathematics (STEM) teachers with immersive, hands-on research experiences at Universities around the country. The NSF RET in nanotechnology encourages teachers to translate cutting-edge research into culturally relevant Project-Based Learning (PjBL) and engineering curriculum. Traditionally, the evaluation of RET programs focuses on the growth and development of teacher self-efficacy, engineering content knowledge gains, or classroom implementation of developed curriculum materials. However, reported methods for evaluating the impact of RETs on their female, minority student populations' high school graduation and undergraduate STEM major rates are limited. This study's objective was to compare RET high school student graduation rates and undergraduate STEM major rates across gender, race, and ethnicity to a comparison sample to determine the RET program's long-term impact on students' likelihood of pursuing STEM careers. The approach of collecting and analyzing the Texas Education Research Center Database (EdRC) data is a novel methodology for assessing RET programs' effectiveness on students. The EdRC is a repository of K-12 student data from the Texas Education Agency (TEA) and Higher Education data from the Texas Higher Education Coordinating Board (THECB). This joint database contains demographic, course registration, graduation, standardized testing, and college major, among others, for all students that attended a K-12 public school in Texas and any college in Texas, public or private. The RET program participants at Rice University (2010 – 2018) taught numerous students, a sample size of 11,240 students. A propensity score matching generated the student comparison group within the database. Students' school campus, gender, race/ethnic status, and English proficiency status were applied to produce a graduation comparison sample size of 11,240 students of Non-RET participants. Linking the TEA database to the THECB database resulted in college STEM participants and comparison sample sizes of 4,029 students. The project team conducted a logistic regression using RET status to predict high school graduation rates as a whole and by individual variables: gender, Asian American, Black, Caucasian, and Latinx students. All models were significant at p less than 0.05, with models in favor of students RET teachers. The project team conducted a logistic regression using RET status to predict student STEM undergraduate major rates as a whole and by individual variables: Gender, Asian American, Black, Caucasian, and Latinx students. African American and Caucasian models were significant at p less than 0.05; Gender, Asian American, and Latinx models were marginally significant (0.05 less than p greater than 0.1), where RET students had higher STEM major rates than matched controls. The findings demonstrate that RET programs have a long-term positive impact on the students' high school graduation rates and undergraduate STEM major rates. As teachers who participate in the RET programs are more likely to conduct courses using PjBL strategies and incorporate real-world engineering practices, female and minority students are more likely to benefit from these practices and seek careers utilizing these skills.more » « less
An official website of the United States government

