skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bound-State Breaking and the Importance of Thermal Exchange–Correlation Effects in Warm Dense Hydrogen
Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange–correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond.  more » « less
Award ID(s):
1931473 2154760
PAR ID:
10494873
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
Volume:
20
Issue:
1
ISSN:
1549-9618
Page Range / eLocation ID:
68 to 78
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g., planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange–correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principles PIMC as well as in DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions that are based on first principles. 
    more » « less
  2. In density-functional theory, the exchange–correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r′), representing the probability depletion of finding an electron at r′ due to an electron at r. Accurate knowledge of n̄xc(r,r′) has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron–electron cusp using finite basis sets. Focusing on Hooke’s atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke’s atoms, the error introduced by the description of the electron–electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew–Burke–Ernzerhof and local density approximation XC hole models are assessed. 
    more » « less
  3. Ground-state Kohn-Sham density functional theory provides, in principle, the exact ground-state energy and electronic spin densities of real interacting electrons in a static external potential. In practice, the exact density functional for the exchange-correlation (xc) energy must be approximated in a computationally efficient way. About 20 mathematical properties of the exact xc functional are known. In this work, we review and discuss these known constraints on the xc energy and hole. By analyzing a sequence of increasingly sophisticated density functional approximations (DFAs), we argue that ( a) the satisfaction of more exact constraints and appropriate norms makes a functional more predictive over the immense space of many-electron systems and ( b) fitting to bonded systems yields an interpolative DFA that may not extrapolate well to systems unlike those in the fitting set. We discuss both how the class of well-described systems has grown along with constraint satisfaction and the possibilities for future functional development. 
    more » « less
  4. Warm dense matter is a region of phase space that is of high interest to multiple scientific communities ranging from astrophysics to inertial confinement fusion. Further understanding of the conditions and properties of this complex state of matter necessitates experimental benchmarking of the current theoretical models. We discuss the development of an x-ray radiography platform designed to measure warm dense matter transport properties at large laser facilities such as the OMEGA Laser Facility. Our platform, Fresnel diffractive radiography, allows for high spatial resolution imaging of isochorically heated targets, resulting in notable diffractive effects at sharp density gradients that are influenced by transport properties such as thermal conductivity. We discuss initial results, highlighting the capabilities of the platform in measuring diffractive features with micrometer-level spatial resolution. 
    more » « less
  5. Chemical bonds between atoms are stabilized by the exchange-correlation (xc) energy, a quantum-mechanical effect in which “social distancing” by electrons lowers their electrostatic repulsion energy. Kohn-Sham density functional theory (DFT) ( 1 ) states that the electron density determines this xc energy, but the density functional must be approximated. This is usually done by satisfying exact constraints of the exact functional (making the approximation predictive), by fitting to data (making it interpolative), or both. Two exact constraints—the ensemble-based piecewise linear variation of the total energy with respect to fractional electron number ( 2 ) and fractional electron z -component of spin ( 3 )—require hard-to-control nonlocality. On page 1385 of this issue, Kirkpatrick et al. ( 4 ) have taken a big step toward more accurate predictions for chemistry through the machine learning of molecular data plus the fractional charge and spin constraints, expressed as data that a machine can learn. 
    more » « less