skip to main content

Search for: All records

Award ID contains: 1931473

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In silico materials design is hampered by the computational complexity of Kohn–Sham DFT, which scales cubically with the system size. Owing to the development of new‐generation kinetic energy density functionals (KEDFs), orbital‐free DFT (OFDFT) can now be successfully applied to a large class of semiconductors and such finite systems as quantum dots and metal clusters. In this work, we present DFTpy, an open‐source software implementing OFDFT written entirely in Python 3 and outsourcing the computationally expensive operations to third‐party modules, such as NumPy and SciPy. When fast simulations are in order, DFTpy exploits the fast Fourier transforms from PyFFTW. New‐generation, nonlocal and density‐dependent‐kernel KEDFs are made computationally efficient by employing linear splines and other methods for fast kernel builds. We showcase DFTpy by solving for the electronic structure of a million‐atom system of aluminum metal which was computed on a single CPU. The Python 3 implementation is object‐oriented, opening the door to easy implementation of new features. As an example, we present a time‐dependent OFDFT implementation (hydrodynamic DFT) which we use to compute the spectra of small metal clusters recovering qualitatively the time‐dependent Kohn–Sham DFT result. The Python codebase allows for easy implementation of application programming interfaces. We showcase the combination of DFTpy and ASE for molecular dynamics simulations of liquid metals. DFTpy is released under the MIT license.

    This article is categorized under:

    Software > Quantum Chemistry

    Electronic Structure Theory > Density Functional Theory

    Data Science > Computer Algorithms and Programming

    more » « less
  2. Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange–correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond. 
    more » « less
    Free, publicly-accessible full text available January 9, 2025
  3. Orbital-free density functional theory constitutes a computationally highly effective tool for modeling electronic structures of systems ranging from room-temperature materials to warm dense matter. Its accuracy critically depends on the employed kinetic energy (KE) density functional, which has to be supplied as an external input. In this work we consider several nonlocal and Laplacian-level KE functionals and use an external harmonic perturbation to compute the static density response at T=0 K in the linear and beyond-linear response regimes. We test for the satisfaction of exact conditions in the limit of uniform densities and for how approximate KE functionals reproduce the density response of realistic materials (e.g., Al and Si) against the Kohn-Sham DFT reference, which employs the exact KE. The results illustrate that several functionals violate exact conditions in the uniform electron gas (UEG) limit. We find a strong correlation between the accuracy of the KE functionals in the UEG limit and in the strongly inhomogeneous case. This empirically demonstrates the importance of imposing the limit of UEG response for uniform densities and validates the use of the Lindhard function in the formulation of kernels for nonlocal functionals. This conclusion is substantiated by additional calculations for bulk aluminum (Al) with a face-centered cubic (fcc) lattice and silicon (Si) with an fcc lattice, body-centered cubic (bcc) lattice, and semiconducting crystal diamond state. The analysis of fcc Al, and fcc as well as bcc Si data follows closely the conclusions drawn for the UEG, allowing us to extend our conclusions to realistic systems that are subject to density inhomogeneities induced by ions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. For an electronic system, given a mean field method and a distribution of orbital occupation numbers that are close to the natural occupations of the correlated system, we provide formal evidence and computational support to the hypothesis that the entropy (or more precisely −σS, where σ is a parameter and S is the entropy) of such a distribution is a good approximation to the correlation energy. Underpinning the formal evidence are mild assumptions: the correlation energy is strictly a functional of the occupation numbers, and the occupation numbers derive from an invertible distribution. Computational support centers around employing different mean field methods and occupation number distributions (Fermi–Dirac, Gaussian, and linear), for which our claims are verified for a series of pilot calculations involving bond breaking and chemical reactions. This work establishes a formal footing for those methods employing entropy as a measure of electronic correlation energy (e.g., i-DMFT [Wang and Baerends, Phys. Rev. Lett. 128, 013001 (2022)] and TAO-DFT [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)]) and sets the stage for the widespread use of entropy functionals for approximating the (static) electronic correlation.

    more » « less
    Free, publicly-accessible full text available November 21, 2024
  5. Free, publicly-accessible full text available November 8, 2024
  6. null (Ed.)