Abstract A key component of the phase diagram of many iron-based superconductors and electron-doped cuprates is believed to be a quantum critical point (QCP), delineating the onset of antiferromagnetic spin-density wave order in a quasi-two-dimensional metal. The universality class of this QCP is believed to play a fundamental role in the description of the proximate non-Fermi liquid behavior and superconducting phase. A minimal model for this transition is the O(3) spin-fermion model. Despite many efforts, a definitive characterization of its universal properties is still lacking. Here, we numerically study the O(3) spin-fermion model and extract the scaling exponents and functional form of the static and zero-momentum dynamical spin susceptibility. We do this using a Hybrid Monte Carlo (HMC) algorithm with a novel auto-tuning procedure, which allows us to study unprecedentedly large systems of 80 × 80 sites. We find a strong violation of the Hertz-Millis form, contrary to all previous numerical results. Furthermore, the form that we do observe provides good evidence that the universal scaling is actually governed by the analytically tractable fixed point discovered near perfect “hot-spot’ nesting, even for a larger nesting window. Our predictions can be directly tested with neutron scattering. Additionally, the HMC method we introduce is generic and can be used to study other fermionic models of quantum criticality, where there is a strong need to simulate large systems.
more »
« less
Depinning in the quenched Kardar-Parisi-Zhang class. I. Mappings, simulations, and algorithm
Depinning of elastic systems advancing on disordered media can usually be described by the quenched Edwards-Wilkinson equation (qEW). However, additional ingredients such as anharmonicity and forces that cannot be derived from a potential energy may generate a different scaling behavior at depinning. The most experimentally relevant is the Kardar-Parisi-Zhang (KPZ) term, proportional to the square of the slope at each site, which drives the critical behavior into the so-called quenched KPZ (qKPZ) universality class. We study this universality class both numerically and analytically: by using exact mappings we show that at least for d = 1, 2 this class encompasses not only the qKPZ equation itself, but also anharmonic depinning and a well-known class of cellular automata introduced by Tang and Leschhorn. We develop scaling arguments for all critical exponents, including size and duration of avalanches. The scale is set by the confining potential strength m2 . This allows us to estimate numerically these exponents as well as the m-dependent effective force correlator (w), and its correlation length ρ := (0)/|′ (0)|. Finally, we present an algorithm to numerically estimate the effective (m-dependent) elasticity c, and the effective KPZ nonlinearity λ. This allows us to define a dimensionless universal KPZ amplitude A := ρλ/c, which takes the value A = 1.10(2) in all systems considered in d = 1. This proves that qKPZ is the effective field theory for all these models. Our work paves the way for a deeper understanding of depinning in the qKPZ class, and in particular, for the construction of a field theory that we describe in a companion paper.
more »
« less
- Award ID(s):
- 2052616
- PAR ID:
- 10494991
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review E
- Volume:
- 107
- Issue:
- 5
- ISSN:
- 2470-0045
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dirk Jan Bukman (Ed.)Percolation theory and the associated conductance networks have provided deep insights into the flow and transport properties of a vast number of heterogeneous materials and media. In practically all cases, however, the conductance of the networks’ bonds remains constant throughout the entire process. There are, however, many important problems in which the conductance of the bonds evolves over time and does not remain constant. Examples include clogging, dissolution and precipitation, and catalytic processes in porous materials, as well as the deformation of a porous medium by applying an external pressure or stress to it that reduces the size of its pores. We introduce two percolation models to study the evolution of the conductivity of such networks. The two models are related to natural and industrial processes involving clogging, precipitation, and dissolution processes in porous media and materials. The effective conductivity of the models is shown to follow known power laws near the percolation threshold, despite radically different behavior both away from and even close to the percolation threshold. The behavior of the networks close to the percolation threshold is described by critical exponents, yielding bounds for traditional percolation exponents. We show that one of the two models belongs to the traditional universality class of percolation conductivity, while the second model yields nonuniversal scaling exponents.more » « less
-
Abstract We consider the directed mean curvature flow on the plane in a weak Gaussian random environment. We prove that, when started from a sufficiently flat initial condition, a rescaled and recentred solution converges to the Cole–Hopf solution of the KPZ equation. This result follows from the analysis of a more general system of nonlinear SPDEs driven by inhomogeneous noises, using the theory of regularity structures. However, due to inhomogeneity of the noise, the “black box” result developed in the series of works cannot be applied directly and requires significant extension to infinite‐dimensional regularity structures. Analysis of this general system of SPDEs gives two more interesting results. First, we prove that the solution of the quenched KPZ equation with a very strong force also converges to the Cole–Hopf solution of the KPZ equation. Second, we show that a properly rescaled and renormalised quenched Edwards–Wilkinson model in any dimension converges to the stochastic heat equation.more » « less
-
In this paper, we consider the KPZ equation under the weak noise scaling. That is, we introduce a small parameter \sqrt{\varepsilon} in front of the noise and let \varepsilon \to 0. We prove that the one-point large deviation rate function has a \frac{3}{2} power law in the deep upper tail. Furthermore, by forcing the value of the KPZ equation at a point to be very large, we prove a limit shape of the KPZ equation as \varepsilon \to 0. This confirms the physics prediction in Kolokolov and Korshunov (2007), Kolokolov and Korshunov (2009), Meerson, Katzav, and Vilenkin (2016), Kamenev, Meerson, and Sasorov (2016), and Le Doussal, Majumdar, Rosso, and Schehr (2016).more » « less
-
Scanning probes reveal complex, inhomogeneous patterns on the surface of many condensed matter systems. In some cases, the patterns form self-similar, fractal geometric clusters. In this paper, we advance the theory of criticality as it pertains to those geometric clusters (defined as connected sets of nearest-neighbor aligned spins) in the context of Ising models. We show how data from surface probes can be used to distinguish whether electronic patterns observed at the surface of a material are confined to the surface, or whether the patterns originate in the bulk. Whereas thermodynamic critical exponents are derived from the behavior of Fortuin–Kasteleyn (FK) clusters, critical exponents can be similarly defined for geometric clusters. We find that these geometric critical exponents are not only distinct numerically from the thermodynamic and uncorrelated percolation exponents, but that they separately satisfy scaling relations at the critical fixed points discussed in the text. We furthermore find that the two-dimensional (2D) cross-sections of geometric clusters in the three-dimensional (3D) Ising model display critical scaling behavior at the bulk phase transition temperature. In particular, we show that when considered on a 2D slice of a 3D system, the pair connectivity function familiar from percolation theory displays more robust critical behavior than the spin-spin correlation function, and we calculate the corresponding critical exponent. We discuss the implications of these two distinct length scales in Ising models. We also calculate the pair connectivity exponent in the clean 2D case. These results extend the theory of geometric criticality in the clean Ising universality classes, and facilitate the broad application of geometric cluster analysis techniques to maximize the information that can be extracted from scanning image probe data in condensed matter systems.more » « less
An official website of the United States government

