Abstract The variability of helium abundance in the solar corona and the solar wind is an important signature of solar activity, solar cycle, and solar wind sources, as well as coronal heating processes. Motivated by recently reported remote-sensing UV imaging observations by Helium Resonance Scattering in the Corona and Heliosphere payload sounding rocket of helium abundance in the inner corona on 2009 September 14 near solar minimum, we present the results of the first three-dimensional three-fluid (electrons, protons, and alpha particles) model of tilted coronal streamer belt and slow solar wind that illustrates the various processes leading to helium abundance differentiation and variability. We find good qualitative agreement between the three-fluid model and the coronal helium abundance variability deduced from UV observations of streamers, providing insight on the effects of the physical processes, such as heating, gravitational settling, and interspecies Coulomb friction in the outflowing solar wind that produce the observed features. The study impacts our understanding of the origins of the slow solar wind.
more »
« less
Defining the Middle Corona
The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory/(SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there.
more »
« less
- PAR ID:
- 10495006
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Solar Physics
- Volume:
- 298
- Issue:
- 6
- ISSN:
- 0038-0938
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This perspective paper brings to light the need for comprehensive studies on the evolution of interplanetary coronal mass ejection (ICME) complexity during propagation. To date, few studies of ICME complexity exist. Here, we define ICME complexity and associated changes in complexity, describe recent works and their limitations, and outline key science questions that need to be tackled. Fundamental research on ICME complexity changes from the solar corona to 1 AU and beyond is critical to our physical understanding of the evolution and interaction of transients in the inner heliosphere. Furthermore, a comprehensive understanding of such changes is required to understand the space weather impact of ICMEs at different heliospheric locations and to improve on predictive space weather models.more » « less
-
Abstract The important role played by magnetic reconnection in the early acceleration of coronal mass ejections (CMEs) has been widely discussed. However, as CMEs may have expansion speeds comparable to their propagation speeds in the corona, it is not clear whether and how reconnection contributes to the true acceleration and expansion separately. To address this question, we analyze the dynamics of a moderately fast CME on 2013 February 27, associated with a continuous acceleration of its front into the high corona, even though its speed had reached ∼700 km s −1 , which is faster than the solar wind. The apparent acceleration of the CME is found to be due to its expansion in the radial direction. The true acceleration of the CME, i.e., the acceleration of its center, is then estimated by taking into account the expected deceleration caused by the drag force of the solar wind acting on a fast CME. It is found that the true acceleration and the radial expansion have similar magnitudes. We find that magnetic reconnection occurs after the eruption of the CME and continues during its propagation in the high corona, which contributes to its dynamic evolution. Comparison between the apparent acceleration related to the expansion and the true acceleration that compensates the drag shows that, for this case, magnetic reconnection contributes almost equally to the expansion and to the acceleration of the CME. The consequences of these measurements for the evolution of CMEs as they transit from the corona to the heliosphere are discussed.more » « less
-
Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7−8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS. Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs’ magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively. Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data. Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction.more » « less
-
This paper outlines key scientific topics that are important for the development of solar system physics and how observations of heavy ion composition can address them. The key objectives include, 1) understanding the Sun’s chemical composition by identifying specific mechanisms driving elemental variation in the corona. 2) Disentangling the solar wind birthplace and drivers of release by determining the relative contributions of active regions (ARs), quiet Sun, and coronal hole plasma to the solar wind. 3) Determining the principal mechanisms driving solar wind evolution from the Sun by identifying the importance and interplay of reconnection, waves, and/or turbulence in driving the extended acceleration and heating of solar wind and transient plasma. The paper recommends complementary heavy ion measurements that can be traced from the Sun to the heliosphere to properly connect and study these regions to address these topics. The careful determination of heavy ion and elemental composition of several particle populations, matched at the Sun and in the heliosphere, will permit for a comprehensive examination of fractionation processes, wave-particle interactions, coronal heating, and solar wind release and energization that are key to understanding how the Sun forms and influences the heliosphere.more » « less