Scheduler side-channels can leak critical information in real-time systems, thus posing serious threats to many safety-critical applications. The main culprit is the inherent determinism in the runtime timing behavior of such systems, e.g., the (expected) periodic behavior of critical tasks. In this paper, we introduce the notion of "schedule indistinguishability/", inspired by work in differential privacy, that introduces diversity into the schedules of such systems while offering analyzable security guarantees. We achieve this by adding a sufficiently large (controlled) noise to the task schedules in order to break their deterministic execution patterns. An "epsilon-Scheduler" then implements schedule indistinguishability in real-time Linux. We evaluate our system using two real applications: (a) an autonomous rover running on a real hardware platform (Raspberry Pi) and (b) a video streaming application that sends data across large geographic distances. Our results show that the epsilon-Scheduler offers better protection against scheduler side-channel attacks in real-time systems while still maintaining good performance and quality-of-service(QoS) requirements.
more »
« less
This content will become publicly available on February 26, 2025
SoK: Security in Real-Time Systems
Security is an increasing concern for real-time systems (RTS). Over the last decade or so, researchers have demonstrated attacks and defenses aimed at such systems. In this paper, we identify, classify and measure the effectiveness of the security research in this domain. We provide a high-level summary [identification] and a taxonomy [classification] of this existing body of work. Furthermore, we carry out an in-depth analysis [measurement] of scheduler-based security techniques — the most common class of real-time security mechanisms. For this purpose, we developed a common metric, “attacker’s burden”, used to measure the effectiveness of (existing as well as future) scheduler-based real-time security measures.
more »
« less
- PAR ID:
- 10495026
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Computing Surveys
- ISSN:
- 0360-0300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Timing correctness is crucial in a multi-criticality real-time system, such as an autonomous driving system. It has been recently shown that these systems can be vulnerable to timing inference attacks, mainly due to their predictable behavioral patterns. Existing solutions like schedule randomization cannot protect against such attacks, often limited by the system’s real-time nature. This article presents “ SchedGuard++ ”: a temporal protection framework for Linux-based real-time systems that protects against posterior schedule-based attacks by preventing untrusted tasks from executing during specific time intervals. SchedGuard++ supports multi-core platforms and is implemented using Linux containers and a customized Linux kernel real-time scheduler. We provide schedulability analysis assuming the Logical Execution Time (LET) paradigm, which enforces I/O predictability. The proposed response time analysis takes into account the interference from trusted and untrusted tasks and the impact of the protection mechanism. We demonstrate the effectiveness of our system using a realistic radio-controlled rover platform. Not only is “ SchedGuard++ ” able to protect against the posterior schedule-based attacks, but it also ensures that the real-time tasks/containers meet their temporal requirements.more » « less
-
Existing design techniques for providing security guarantees against network-based attacks in cyber-physical systems (CPS) are based on continuous use of standard cryptographic tools to ensure data integrity. This creates an apparent conflict with common resource limitations in these systems, given that, for instance, lengthy message authentication codes (MAC) introduce significant overheads. We present a framework to ensure both timing guarantees for real-time network messages and Quality-of-Control (QoC) in the presence of network-based attacks. We exploit physical properties of controlled systems to relax constant integrity enforcement requirements, and show how the problem of feasibility testing of intermittently authenticated real-time messages can be cast as a mixed integer linear programming problem. Besides scheduling a set of real-time messages with predefined authentication rates obtained from QoC requirements, we show how to optimally increase the overall system QoC while ensuring that all real-time messages are schedulable. Finally, we introduce an efficient runtime bandwidth allocation method, based on opportunistic scheduling, in order to improve QoC. We evaluate our framework on a standard benchmark designed for CAN bus, and show how an infeasible message set with strong security guarantees can be scheduled if dynamics of controlled systems are taken into account along with real-time requirements.more » « less
-
Industrial control systems (ICS) are systems used in critical infrastructures for supervisory control, data acquisition, and industrial automation. ICS systems have complex, component-based architectures with many different hardware, software, and human factors interacting in real time. Despite the importance of security concerns in industrial control systems, there has not been a comprehensive study that examined common security architectural weaknesses in this domain. Therefore, this paper presents the first in-depth analysis of 988 vulnerability advisory reports for Industrial Control Systems developed by 277 vendors. We performed a detailed analysis of the vulnerability reports to measure which components of ICS have been affected the most by known vulnerabilities, which security tactics were affected most often in ICS and what are the common architectural security weaknesses in these systems. Our key findings were: (1) Human-Machine Interfaces, SCADA configurations, and PLCs were the most affected components, (2) 62.86% of vulnerability disclosures in ICS had an architectural root cause, (3) the most common architectural weaknesses were “Improper Input Validation”, followed by “Im-proper Neutralization of Input During Web Page Generation” and “Improper Authentication”, and (4) most tactic-related vulnerabilities were related to the tactics “Validate Inputs”, “Authenticate Actors” and “Authorize Actors”.more » « less
-
Abstract—Lingua Franca is a programming paradigm that eases the development of distributed cyber-physical systems and ensures determinism. These systems are subject to stringent timing constraints, generally expressed as task deadlines, and meeting them requires real-time scheduling. This work presents a layered scheduling strategy for Lingua Franca for enhanced real-time performance that builds upon any priority-based operating system thread scheduler. The application designers need to specify only the application-specific deadlines, and the Lingua Franca runtime automatically converts them into appropriate priority values for the OS scheduler to obtain earliest deadline first scheduling.more » « less