Abstract Strongly correlated polaritons in Jaynes–Cummings (JC) lattices can exhibit quantum phase transitions between the Mott-insulating and superfluid phases at integer fillings. The prerequisite to observe such phase transitions is to pump polariton excitations into a JC lattice and prepare them into appropriate ground states. Despite previous efforts, it is still challenging to generate many-body states with high accuracy. Here, we present an approach for the robust preparation of many-body ground states of polaritons in finite-sized JC lattices by optimized nonlinear ramping. We apply a Landau–Zener type of estimation to this finite-sized system and derive the optimal ramping index for selected ramping trajectories, which can greatly improve the fidelity of the prepared states. With numerical simulation, we show that by choosing an appropriate ramping trajectory, the fidelity in this approach can remain close to unity in almost the entire parameter space. This approach can shed light on high-fidelity state preparation in quantum simulators and advance the implementation of quantum simulation with practical devices.
more »
« less
Computational projects with the Landau–Zener problem in the quantum mechanics classroom
The Landau–Zener problem, where a minimum energy separation is passed with constant rate in a two-state quantum-mechanical system, is an excellent model quantum system for a computational project. It requires a low-level computational effort, but has a number of complex numerical and algorithmic issues that can be resolved through dedicated work. It can be used to teach computational concepts, such as accuracy, discretization, and extrapolation, and it reinforces quantum concepts of time-evolution via a time-ordered product and of extrapolation to infinite time via time-dependent perturbation theory. In addition, we discuss the concept of compression algorithms, which are employed in many advanced quantum computing strategies, and easy to illustrate with the Landau–Zener problem.
more »
« less
- PAR ID:
- 10495182
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- American Journal of Physics
- Volume:
- 91
- Issue:
- 11
- ISSN:
- 0002-9505
- Page Range / eLocation ID:
- 885 to 892
- Subject(s) / Keyword(s):
- Equations of motion Hamiltonian mechanics Computational methods Interaction picture Perturbation theory Quantum mechanics Quantum tunneling
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cavity quantum electrodynamics provides an ideal platform to engineer and control light-matter interactions with polariton quasiparticles. In this work, we investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous cavity vacuum field. The system couples collectively to the cavity field, through its center of mass, and collective polariton states emerge. The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles. This leads to an enhancement of localization in the matter ground state density, which features a maximum when light and matter are on resonance, and demonstrates a Dicke-like, collective behavior with the particle number. The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons. In addition, it is shown that the diamagneticA^2 term is necessary for the stability of the system, as otherwise the superradiant ground state instability occurs. We demonstrate that coherent transfer of polaritonic population is possible with an external magnetic field and by monitoring the Landau-Zener transition probability.more » « less
-
Representing real-time data as a sum of complex exponentials provides a compact form that enables both denoising and extrapolation. As a fully data-driven method, the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm is agnostic to the underlying physical equations, making it broadly applicable to various observables and experimental or numerical setups. In this work, we consider applications of the ESPRIT algorithm primarily to extend real-time dynamical data from simulations of quantum systems. We evaluate ESPRIT's performance in the presence of noise and compare it to other extrapolation methods. We demonstrate its ability to extract information from short-time dynamics to reliably predict long-time behavior and determine the minimum time interval required for accurate results. We discuss how this insight can be leveraged in numerical methods that propagate quantum systems in time, and show how ESPRIT can predict infinite-time values of dynamical observables, offering a purely data-driven approach to characterizing quantum phases.more » « less
-
Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancy’s excited-state orbitals and induce Landau-Zener-Stückelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancy’s symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount.more » « less
-
Abstract Avoided crossings of level pairs with opposite slopes can form potential-energy minima for the external degree of freedom of quantum particles, giving rise to metastable states on the avoided crossings (MSACs). Nonadiabatic decay of MSACs is studied by solving the two-component Schrödinger equation in diabatic and adiabatic representations. Non-perturbative lifetime values are found by evaluating wave function flux and scattering phases of time-independent solutions, as well as wave-function decay of time-dependent solutions. The values from these methods generally agree well, validating the utilized approaches. As the adiabaticity parameter, V , of the system is increased by about a factor of ten across the mixed diabatic/adiabatic regime, the MSAC character transitions from marginally to highly stable, with the lifetimes increasing by about ten orders of magnitude. The dependence of MSAC lifetime on the vibrational quantum number, ν , is discussed for several regimes of V . Time-dependent perturbation theory yields lifetimes that deviate by ≲30% from non-perturbative results, over the range of V and ν studied, while a semi-classical model based on Landau–Zener tunneling is up to a factor of twenty off. The results are relevant to numerous atomic and molecular systems with metastable states on intersecting, coupled potential energy curves.more » « less
An official website of the United States government
