skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold
Award ID(s):
2240976
PAR ID:
10495203
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400700507
Page Range / eLocation ID:
356 to 370
Format(s):
Medium: X
Location:
Copenhagen Denmark
Sponsoring Org:
National Science Foundation
More Like this
  1. Chung, KM; Sasaki, Y (Ed.)
    We witness an increase in applications like cryptocurrency wallets, which involve users issuing signatures using private keys. To protect these keys from loss or compromise, users commonly outsource them to a custodial server. This creates a new point of failure, because compromise of such a server leaks the user’s key, and if user authentication is implemented with a password then this password becomes open to an offline dictionary attack (ODA). A better solution is to secret-share the key among a set of servers, possibly including user’s own device(s), and implement password authentication and signature computation using threshold cryptography. We propose a notion of augmented password-protected threshold signature (aptSIG) scheme which captures the best possible security level for this setting. Using standard threshold cryptography techniques, i.e. threshold password authentication and threshold signatures, one can guarantee that compromising up to t out of n servers reveals no information on either the key or the password. However, we extend this with a novel property, that compromising even all n servers also does not leak any information, except via an unavoidable ODA attack, which reveals the key only if the attacker guesses the password. We define aptSIG in the Universally Composable (UC) framework and show that it can be constructed very efficiently, using a black-box composition of any UC threshold signature [13] and a UC augmented Password-Protected Secret Sharing (aPPSS), which we define as an extension of prior notion of PPSS [30]. As concrete instantiations we obtain secure aptSIG schemes for ECDSA (in the case of t=n-1) and BLS signatures with very small overhead over the respective threshold signature. Finally, we note that both the notion and our generic solution for augmented password-protected threshold signatures can be generalized to password-protecting MPC for any keyed functions. 
    more » « less