This content will become publicly available on March 13, 2025
Chinese hamster ovary (CHO) cells are among the most common cell lines used for therapeutic protein production. Membrane fouling during bioreactor harvesting is a major limitation for the downstream purification of therapeutic proteins. Host cell proteins (HCP) are the most challenging impurities during downstream purification processes. The present work focuses on identification of HCP foulants during CHO bioreactor harvesting using reverse asymmetrical commercial membrane BioOptimal™ MF‐SL. In order to investigate foulants and fouling behavior during cell clarification, for the first time a novel backwash process was developed to effectively elute almost all the HCP and DNA from the fouled membrane filter. The isoelectric points (pIs) and molecular weights (MWs) of major HCP in the bioreactor harvest and fouled on the membrane were successfully characterized using two‐dimensional gel electrophoresis (2D SDS‐PAGE). In addition, a total of 8 HCP were identified using matrix‐assisted laser desorption/ionization‐mass spectroscopy (MALDI‐MS). The majority of these HCP are enzymes or associated with exosomes, both of which can form submicron‐sized particles which could lead to the plugging of the filters.
more » « less- PAR ID:
- 10495252
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biotechnology Progress
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 8756-7938
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant.more » « less
-
Abstract The biomanufacturing industry is advancing toward continuous processes that will involve longer culture durations and older cell ages. These upstream trends may bring unforeseen challenges for downstream purification due to fluctuations in host cell protein (HCP) levels. To understand the extent of HCP expression instability exhibited by Chinese hamster ovary (CHO) cells over these time scales, an industry‐wide consortium collaborated to develop a study to characterize age‐dependent changes in HCP levels across 30, 60, and 90 cell doublings, representing a period of approximately 60 days. A monoclonal antibody (mAb)‐producing cell line with bulk productivity up to 3 g/L in a bioreactor was aged in parallel with its parental CHO‐K1 host. Subsequently, both cell types at each age were cultivated in an automated bioreactor system to generate harvested cell culture fluid (HCCF) for HCP analysis. More than 1500 HCPs were quantified using complementary proteomic techniques, two‐dimensional electrophoresis (2DE) and liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS). While up to 13% of proteins showed variable expression with age, more changes were observed when comparing between the two cell lines with up to 47% of HCPs differentially expressed. A small subset (50 HCPs) with age‐dependent expression were previously reported to be problematic as high‐risk and/or difficult‐to‐remove impurities; however, the vast majority of these were downregulated with age. Our findings suggest that HCP expression changes over this time scale may not be as dramatic and pose as great of a challenge to downstream processing as originally expected but that monitoring of variably expressed problematic HCPs remains critical.
-
null (Ed.)This study examines membrane performance data of a pilot-scale gas-sparged anaerobic membrane bioreactor (AnMBR) over its 472 day operational period and characterizes the foulant cake constituents through a membrane autopsy. The average permeability of 336 ± 81 LMH per bar during the first 40 days of operation decreased by 92% by the study's conclusion. While maintenance cleaning was effective initially, its ability to restore permeability decreased with time. Wasting bioreactor solids appeared to be effective in restoring permeability where chemical cleans were unable to. The restoration mechanism appears to be a decrease in colloidal material, measured by semi-soluble chemical oxygen demand (ssCOD), rather than bioreactor total solids concentration. This is further supported through the use of fluorometry during AnMBR operation, which showed an increase in tyrosine-like compounds during heavy fouling conditions, suggesting that proteinaceous materials have a large influence on fouling. This was corroborated during membrane autopsy using Fourier transform infrared spectroscopy (FTIR). FTIR, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy were used to characterize inorganic scalants and predominantly found phosphate salts and calcium sulfate. Fundamentally characterizing foulants and introducing novel and dynamic monitoring parameters during AnMBR operation such as ssCOD and fluorometry can enable more targeted fouling control.more » « less
-
Abstract Alternating tangential flow filtration (ATF) has become one of the primary methods for cell retention and clarification in perfusion bioreactors. However, membrane fouling can cause product sieving losses that limit the performance of these systems. This study used scanning electron microscopy and energy dispersive X‐ray spectroscopy to identify the nature and location of foulants on 0.2 μm polyethersulfone hollow fiber membranes after use in industrial Chinese hamster ovary cell perfusion bioreactors for monoclonal antibody production. Membrane fouling was dominated by proteinaceous material, primarily host cell proteins along with some monoclonal antibody. Fouling occurred primarily on the lumen surface with much less protein trapped within the depth of the fiber. Protein deposition was also most pronounced near the inlet/exit of the hollow fibers, which are the regions with the greatest flux (and transmembrane pressure) during the cyclical operation of the ATF. These results provide important insights into the underlying phenomena governing the fouling behavior of ATF systems for continuous bioprocessing.
-
Membrane processes are widely used in industrial applications such water purification, food processing and pharmaceutical manufacturing. During their operation, the accumulation of foulants in membrane pores and on membrane surfaces lead to the reduction in flux, membrane lifetime and increase in operational cost, and the understanding of the fouling phenomenon is important for mitigating these problems. In this paper we report the application of Raman chemical imaging as a means of identify and map foulants on a membrane surface. The surface of a Polytetrafluoroethylene (PTFE) membrane was studied by Raman chemical imaging before and after fouling during desalination via membrane distillation. Information about location and concentration of three different salts namely CaSO4, BaSO4 and CaCO3 was studied. The three salts showed different distribution patterns, and their distribution was analyzed by correlation mapping and multivariate curve resolution. It was observed that CaSO4 agglomerated in specific places while the BaSO4 and CaCO3 were more distributed. Raman imaging appears to be a powerful tool for studying membrane foulants and can be effective in identifying the distribution of different species on a membrane surface.more » « less