Abstract Spatial transcripome (ST) profiling can reveal cells’ structural organizations and functional roles in tissues. However, deciphering the spatial context of gene expressions in ST data is a challenge—the high-order structure hiding in whole transcriptome space over 2D/3D spatial coordinates requires modeling and detection of interpretable high-order elements and components for further functional analysis and interpretation. This paper presents a new method GraphTucker—graph-regularized Tucker tensor decomposition for learning high-order factorization in ST data. GraphTucker is based on a nonnegative Tucker decomposition algorithm regularized by a high-order graph that captures spatial relation among spots and functional relation among genes. In the experiments on several Visium and Stereo-seq datasets, the novelty and advantage of modeling multiway multilinear relationships among the components in Tucker decomposition are demonstrated as opposed to the Canonical Polyadic Decomposition and conventional matrix factorization models by evaluation of detecting spatial components of gene modules, clustering spatial coefficients for tissue segmentation and imputing complete spatial transcriptomes. The results of visualization show strong evidence that GraphTucker detect more interpretable spatial components in the context of the spatial domains in the tissues. Availability and implementationhttps://github.com/kuanglab/GraphTucker.
more »
« less
GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations
Abstract Spatially-resolved RNA profiling has now been widely used to understand cells’ structural organizations and functional roles in tissues, yet it is challenging to reconstruct the whole spatial transcriptomes due to various inherent technical limitations in tissue section preparation and RNA capture and fixation in the application of the spatial RNA profiling technologies. Here, we introduce a graph-guided neural tensor decomposition (GNTD) model for reconstructing whole spatial transcriptomes in tissues. GNTD employs a hierarchical tensor structure and formulation to explicitly model the high-order spatial gene expression data with a hierarchical nonlinear decomposition in a three-layer neural network, enhanced by spatial relations among the capture spots and gene functional relations for accurate reconstruction from highly sparse spatial profiling data. Extensive experiments on 22 Visium spatial transcriptomics datasets and 3 high-resolution Stereo-seq datasets as well as simulation data demonstrate that GNTD consistently improves the imputation accuracy in cross-validations driven by nonlinear tensor decomposition and incorporation of spatial and functional information, and confirm that the imputed spatial transcriptomes provide a more complete gene expression landscape for downstream analyses of cell/spot clustering for tissue segmentation, and spatial gene expression clustering and visualizations.
more »
« less
- Award ID(s):
- 2042159
- PAR ID:
- 10495319
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Subject(s) / Keyword(s):
- Spatial Transcriptomics Hierarchical Tensor Decomposition Neural Tensor Decomposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.more » « less
-
Histopathology images capture tissue morphology, while spatial transcriptomics (ST) provides spatially resolved gene expression, offering complementary molecular insights. However, acquiring ST data is costly and time-consuming, limiting its practical use. To address this, we propose HAGE (Hierarchical Alignment Gene-Enhanced), a framework that enhances pathology representation learning by predicting gene expression directly from histological images and integrating molecular context into the pathology model. HAGE leverages gene-type embeddings, which encode relationships among genes, guiding the model in learning biologically meaningful expression patterns. To further improve alignment between histology and gene expression, we introduce a hierarchical clustering strategy that groups image patches based on molecular and visual similarity, capturing both local and global dependencies. HAGE consistently outperforms existing methods across six datasets. In particular, on the HER2+ breast cancer cohort, it significantly improves the Pearson correlation coefficient by 8.0% and achieves substantial reductions in mean squared error and mean absolute error by 18.1% and 38.0%, respectively. Beyond gene expression prediction, HAGE improves downstream tasks, such as patch-level cancer classification and whole-slide image diagnostics, demonstrating its broader applicability. To the best of our knowledge, HAGE is the first framework to integrate gene co-expression as prior knowledge into a pathology image encoder via a cross-attention mechanism, enabling more biologically informed and accurate pathology representations. https://github.com/uta-smile/gene_expression.more » « less
-
Abstract Spatially resolved gene expression profiling provides insight into tissue organization and cell–cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC.more » « less
-
Background In the past few years, there has been an explosion in single-cell transcriptomics datasets, yet in vivo confirmation of these datasets is hampered in plants due to lack of robust validation methods. Likewise, modeling of plant development is hampered by paucity of spatial gene expression data. RNA fluorescence in situ hybridization (FISH) enables investigation of gene expression in the context of tissue type. Despite development of FISH methods for plants, easy and reliable whole mount FISH protocols have not yet been reported. Results We adapt a 3-day whole mount RNA-FISH method for plant species based on a combination of prior protocols that employs hybridization chain reaction (HCR), which amplifies the probe signal in an antibody-free manner. Our whole mount HCR RNA-FISH method shows expected spatial signals with low background for gene transcripts with known spatial expression patterns in Arabidopsis inflorescences and monocot roots. It allows simultaneous detection of three transcripts in 3D. We also show that HCR RNA-FISH can be combined with endogenous fluorescent protein detection and with our improved immunohistochemistry (IHC) protocol. ConclusionsThe whole mount HCR RNA-FISH and IHC methods allow easy investigation of 3D spatial gene expression patterns in entire plant tissues.more » « less
An official website of the United States government

