skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 21, 2026

Title: HAGE: Hierarchical Alignment Gene-Enhanced Pathology Representation Learning with Spatial Transcriptomics
Histopathology images capture tissue morphology, while spatial transcriptomics (ST) provides spatially resolved gene expression, offering complementary molecular insights. However, acquiring ST data is costly and time-consuming, limiting its practical use. To address this, we propose HAGE (Hierarchical Alignment Gene-Enhanced), a framework that enhances pathology representation learning by predicting gene expression directly from histological images and integrating molecular context into the pathology model. HAGE leverages gene-type embeddings, which encode relationships among genes, guiding the model in learning biologically meaningful expression patterns. To further improve alignment between histology and gene expression, we introduce a hierarchical clustering strategy that groups image patches based on molecular and visual similarity, capturing both local and global dependencies. HAGE consistently outperforms existing methods across six datasets. In particular, on the HER2+ breast cancer cohort, it significantly improves the Pearson correlation coefficient by 8.0% and achieves substantial reductions in mean squared error and mean absolute error by 18.1% and 38.0%, respectively. Beyond gene expression prediction, HAGE improves downstream tasks, such as patch-level cancer classification and whole-slide image diagnostics, demonstrating its broader applicability. To the best of our knowledge, HAGE is the first framework to integrate gene co-expression as prior knowledge into a pathology image encoder via a cross-attention mechanism, enabling more biologically informed and accurate pathology representations. https://github.com/uta-smile/gene_expression.  more » « less
Award ID(s):
2400785 2412195
PAR ID:
10650923
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Page Range / eLocation ID:
228 to 238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate diagnosis and prognosis assisted by pathology images are essential for cancer treatment selection and planning. Despite the recent trend of adopting deep-learning approaches for analyzing complex pathology images, they fall short as they often overlook the domain-expert understanding of tissue structure and cell composition. In this work, we focus on a challenging Open-ended Pathology VQA (PathVQA-Open) task and propose a novel framework named Path-RAG, which leverages HistoCartography to retrieve relevant domain knowledge from pathology images and significantly improves performance on PathVQA-Open. Admitting the complexity of pathology image analysis, Path-RAG adopts a human-centered AI approach by retrieving domain knowledge using HistoCartography to select the relevant patches from pathology images. Our experiments suggest that domain guidance can significantly boost the accuracy of LLaVA-Med from 38% to 47%, with a notable gain of 28% for H&E-stained pathology images in the PathVQA-Open dataset. For longer-form question and answer pairs, our model consistently achieves significant improvements of 32.5% in ARCH-Open PubMed and 30.6% in ARCH-Open Books on H\&E images. 
    more » « less
  2. Spatial transcriptomics (ST) has emerged as a powerful technology for bridging histology imaging with gene expression profiling. However, its application has been limited by low throughput and the need for specialized experimental facilities. Prior works sought to predict ST from whole-slide histology images to accelerate this process, but they suffer from two major limitations. First, they do not explicitly model cell-cell interaction as they factorize the joint distribution of whole-slide ST data and predict the gene expression of each spot independently. Second, their encoders struggle with memory constraints due to the large number of spots (often exceeding 10,000) in typical ST datasets. Herein, we propose STFlow, a flow matching generative model that considers cell-cell interaction by modeling the joint distribution of gene expression of an entire slide. It also employs an efficient slide-level encoder with local spatial attention, enabling whole-slide processing without excessive memory overhead. On the recently curated HEST-1k and STImage-1K4M benchmarks, STFlow substantially outperforms state-of-the-art baselines and achieves over 18% relative improvements over the pathology foundation models. 
    more » « less
  3. Abstract Spatially resolved gene expression profiling provides insight into tissue organization and cell–cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC. 
    more » « less
  4. Richards, Blake A (Ed.)
    While current deep learning algorithms have been successful for a wide variety of artificial intelligence (AI) tasks, including those involving structured image data, they present deep neurophysiological conceptual issues due to their reliance on the gradients that are computed by backpropagation of errors (backprop). Gradients are required to obtain synaptic weight adjustments but require knowledge of feed-forward activities in order to conduct backward propagation, a biologically implausible process. This is known as the “weight transport problem”. Therefore, in this work, we present a more biologically plausible approach towards solving the weight transport problem for image data. This approach, which we name the error-kernel driven activation alignment (EKDAA) algorithm, accomplishes through the introduction of locally derived error transmission kernels and error maps. Like standard deep learning networks, EKDAA performs the standard forward process via weights and activation functions; however, its backward error computation involves adaptive error kernels that propagate local error signals through the network. The efficacy of EKDAA is demonstrated by performing visual-recognition tasks on the Fashion MNIST, CIFAR-10 and SVHN benchmarks, along with demonstrating its ability to extract visual features from natural color images. Furthermore, in order to demonstrate its non-reliance on gradient computations, results are presented for an EKDAA-trained CNN that employs a non-differentiable activation function. 
    more » « less
  5. Abstract MotivationSpatial transcriptomics technologies, which generate a spatial map of gene activity, can deepen the understanding of tissue architecture and its molecular underpinnings in health and disease. However, the high cost makes these technologies difficult to use in practice. Histological images co-registered with targeted tissues are more affordable and routinely generated in many research and clinical studies. Hence, predicting spatial gene expression from the morphological clues embedded in tissue histological images provides a scalable alternative approach to decoding tissue complexity. ResultsHere, we present a graph neural network based framework to predict the spatial expression of highly expressed genes from tissue histological images. Extensive experiments on two separate breast cancer data cohorts demonstrate that our method improves the prediction performance compared to the state-of-the-art, and that our model can be used to better delineate spatial domains of biological interest. Availability and implementationhttps://github.com/song0309/asGNN/ 
    more » « less