Sex comb on midleg-like-2 (SCML2), a conserved polycomb group protein, functions as a transcriptional repressor. SCML2 binds monomethylated lysine residues on histones and regulates homeotic gene expression during development in mammals and the fly. Using proteomic approaches, we have identified SCML2 as a binding partner of the YAP1 protein complexes isolated from nuclei of prostate cancer cell lines. Both SCML2 and YAP1 are known to regulate basic cellular biology, including stem cell maintenance and carcinogenesis. Our western blot analysis showed that, unlike androgen receptor (AR)-negative cancerous and non-cancerous prostate epithelium, AR-positive cell lines express the high levels of SCML2, suggesting a possible link between androgen hormonal signaling and SCML2. In addition, our immunofluorescence imaging revealed that androgen hormone signaling promoted the subcellular localization of SCML2 and YAP1 proteins compared with mock control. Enzalutamide, a potent pharmacological inhibitor of AR, significantly prevented the subcellular distribution ofYAP1 and SCML2. Consistent with this observation, our proximity ligation assay demonstrated that androgen also regulated the physical interaction between SCML2 and YAP1proteins that occurred primarily in cell nuclei. Enzalutamide also prevented protein-protein interaction between YAP and SCML2. Besides, our GST-pulldown assay revealed that SCML2 and proteins physically interact with each other in the test tube. Furthermore, our promoter-reporter assay showed that transfection of two different SCML2 siRNA enhanced the activation of the YAP-responsive promoter-reporter gene four-fold compared to mock siRNA control. These observations suggest that the interaction between SCML2 and YAP1 is biologically functional and crucial in human physiology and disease.
more »
« less
LucFlow: A method to measure Luciferase reporter expression in single cells
Reporter assays, in which the expression of an inert protein is driven by gene regulatory elements such as promoters and enhancers, are a workhorse for investigating gene regulation. Techniques for measuring reporter gene expression vary from single-cell or single-molecule approaches having low throughput to bulk Luciferase assays that have high throughput. We developed a Luciferase Reporter Assay using Flow-Cytometry (LucFlow), which measures reporter expression in single cells immunostained for Luciferase. We optimized and tested LucFlow with a murine cell line that can be differentiated into neutrophils, into which promoter-reporter and enhancer-promoter-reporter constructs have been integrated in a site-specific manner. The single-cell measurements are comparable to bulk ones but we found that dead cells have no detectable Luciferase protein, so that bulk assays underestimate reporter expression. LucFlow is able to achieve a higher accuracy than bulk methods by excluding dead cells during flow cytometry. Prior to fixation and staining, the samples are spiked with stained cells that can be discriminated during flow cytometry and control for tube-to-tube variation in experimental conditions. Computing fold change relative to control cells allows LucFlow to achieve a high level of precision. LucFlow, therefore, enables the accurate and precise measurement of reporter expression in a high throughput manner.
more »
« less
- Award ID(s):
- 1942471
- PAR ID:
- 10495534
- Editor(s):
- Hui, Xiaoyan
- Publisher / Repository:
- Public Library of Science
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 10
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0292317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Organisms track time of day through the function of cell-autonomous molecular clocks. In addition to a central clock located in the brain, molecular clocks are present in most peripheral tissues. Circadian clocks are coordinated within and across tissues, but the manner through which this coordination is achieved is not well understood. We reasoned that the ability to track in vivo molecular clock activity in specific tissues of the fruit fly, Drosophila melanogaster, would facilitate an investigation into the relationship between different clock-containing tissues. Previous efforts to monitor clock gene expression in single flies in vivo have used regulatory elements of several different clock genes to dictate expression of a luciferase reporter enzyme, the activity of which can be monitored using a luminometer. Although these reporter lines have been instrumental in our understanding of the circadian system, they generally lack cell specificity, making it difficult to compare molecular clock oscillations between different tissues. Here, we report the generation of several novel lines of flies that allow for inducible expression of a luciferase reporter construct for clock gene transcriptional activity. We find that these lines faithfully report circadian transcription, as they exhibit rhythmic luciferase activity that is dependent on a functional molecular clock. Furthermore, we take advantage of our reporter lines’ tissue specificity to demonstrate that peripheral molecular clocks are able to retain rhythmicity for multiple days under constant environmental conditions.more » « less
-
The Hippo pathway controls cell-cell interaction and organ size by regulating cell proliferation. The study aimed to determine whether Hippo/YAP and NF-kappa B/RELA signaling interact. Here, we have demonstrated that native YAP1/TEAD and RELA proteins biochemically and functionally interact with each other in human LNCaP and C4-2 cell lines. Our co-immunoprecipitation (co-IP), western blot (WB), and proximity ligation assay (PLA) showed that endogenous YAP/TEAD and RELA physically interact within the cell. Our immunofluorescence assays revealed that the expression of YAP1 and RELA proteins overlapped in the cytoplasm and the nucleus. Combined treatment of cells with RANKL (receptor activator of nuclear factor-kappa Β ligand) and androgen hormone enhanced YAP1 and RELA colocalization and interaction, as demonstrated by co-IP/WB experiments. Moreover, our PLA confirmed that co-treatment of cells with androgen and SDF1a (stromal cell-derived factor 1 alpha) or RANKL increased YAP1 and RELA interaction cytoplasm and nucleus compared with controls. Our promoter-reporter assays showed that the knockdown of YAP1 by siRNA significantly reduced the activity of an NF-Kappa B responsive promoter-reporter gene. We also showed that controlled expression of MST1/STK4, a potent inhibitor of YAP1, attenuated the NF-Kappa B promoter reporter activity. Our unbiased bioinformatics analysis of the chromatin immunoprecipitation data has revealed that YAP/TEAD and NF-kappa B signaling regulates several genes. These findings suggest that interaction between the Hippo/YAP and NF-Kappa B/RELA plays a critical role in broad cellular biology.more » « less
-
null (Ed.)The transcriptional co-activator YAP1 (yes-associated protein 1) is a critical nuclear effector of the Hippo pathway. The Hippo pathway regulates cell growth, cell motility, cell migration, and carcinogenesis, but poorly defined mechanism. We investigated biochemical and functional interactions between YAP1 and the nuclear factor (NF)-kappa B/RELA subunit in prostate cancer cell models. We demonstrated that endogenous YAP1 and RELA form protein complexes in the cell, as revealed by co-immunoprecipitation and western blotting. Compared with control, we found that combined treatment of cells with androgen and SDF-1a (stromal cell-derived factor-1 alpha) or RANKL (receptor activator of NF-kappa B ligand) enhanced the protein-protein interaction between YAP1 and RELA, as showed by proximity ligation assay. Our confocal microscopy experiment further showed that combined SDF-1aand androgen treatment promoted the YAP1 and RELA colocalization instead of single-agent treatment. Moreover, our promoter-reporter and RNAi experiments showed that knockdown of YAP1 or TEAD, a key mediator of the YAP transcription, significantly reduced the NF-Kappa B promoter-reporter gene activity. Also, disruption of YAP1 activity attenuated the TEAD-RELA interaction. Furthermore, the controlled expression of MST1/STK4, a potent inhibitor of YAP1, attenuated the NF-Kappa B-promoter reporter activity. Additionally, our unbiased bioinformatics analysis of the exiting ChIP-seq (chromatin immunoprecipitation-sequencing) data sets identified several genes that are likely co-regulated by the YAP1/TEAD and NF-Kappa B/RELA transcription factors. These findings suggest that cooperative androgen and cytokine signaling regulates Hippo/YAP and NF-Kappa B interaction. Thus, the YAP1/TEAD and NF-Kappa B/RELA interaction may have critical roles in cellular biology and human diseases.more » « less
-
IntroductionMrpC, a member of the CRP/Fnr transcription factor superfamily, is necessary to induce and control the multicellular developmental program of the bacterium,Myxococcus xanthus. During development, certain cells in the population first swarm into haystack-shaped aggregates and then differentiate into environmentally resistant spores to form mature fruiting bodies (a specialized biofilm).mrpCtranscriptional regulation is controlled by negative autoregulation (NAR). MethodsWild type and mutantmrpCpromoter regions were fused to a fluorescent reporter to examine effects onmrpCexpression in the population and in single cellsin situ. Phenotypic consequences of the mutantmrpCpromoter were assayed by deep convolution neural network analysis of developmental movies, sporulation efficiency assays, and anti-MrpC immunoblot. In situ analysis of single cell MrpC levels in distinct populations were assayed with an MrpC-mNeonGreen reporter. ResultsDisruption of MrpC binding sites within themrpCpromoter region led to increased and broadened distribution ofmrpCexpression levels between individual cells in the population. Expression ofmrpCfrom the mutant promoter led to a striking phenotype in which cells lose synchronized transition from aggregation to sporulation. Instead, some cells abruptly exit aggregation centers and remain locked in a cohesive swarming state we termed developmental swarms, while the remaining cells transition to spores inside residual fruiting bodies.In situexamination of a fluorescent reporter for MrpC levels in developmental subpopulations demonstrated cells locked in the developmental swarms contained MrpC levels that do not reach the levels observed in fruiting bodies. DiscussionIncreased cell-to-cell variation inmrpCexpression upon disruption of MrpC binding sites within its promoter is consistent with NAR motifs functioning to reducing noise. Noise reduction may be key to synchronized transition of cells in the aggregation state to the sporulation state. We hypothesize a novel subpopulation of cells trapped as developmental swarms arise from intermediate levels of MrpC that are sufficient to promote aggregation but insufficient to trigger sporulation. Failure to transition to higher levels of MrpC necessary to induce sporulation may indicate cells in developmental swarms lack an additional positive feedback signal required to boost MrpC levels.more » « less
An official website of the United States government

