skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping Permafrost Variability and Degradation Using Seismic Surface Waves, Electrical Resistivity, and Temperature Sensing: A Case Study in Arctic Alaska
Abstract Subsurface processes significantly influence surface dynamics in permafrost regions, necessitating utilizing diverse geophysical methods to reliably constrain permafrost characteristics. This research uses multiple geophysical techniques to explore the spatial variability of permafrost in undisturbed tundra and its degradation in disturbed tundra in Utqiaġvik, Alaska. Here, we integrate multiple quantitative techniques, including multichannel analysis of surface waves (MASW), electrical resistivity tomography (ERT), and ground temperature sensing, to study heterogeneity in permafrost’s geophysical characteristics. MASW results reveal active layer shear wave velocities (Vs) between 240 and 370 m/s, and permafrostVsbetween 450 and 1,700 m/s, typically showing a low‐high‐low velocity pattern. Additionally, we find an inverse relationship between in situVsand ground temperature measurements. TheVsprofiles along with electrical resistivity profiles reveal cryostructures such as cryopeg and ice‐rich zones in the permafrost layer. The integrated results of MASW and ERT provide valuable information for characterizing permafrost heterogeneity and cryostructure. Corroboration of these geophysical observations with permafrost core samples’ stratigraphies and salinity measurements further validates these findings. This combination of geophysical and temperature sensing methods along with permafrost core sampling confirms a robust approach for assessing permafrost’s spatial variability in coastal environments. Our results also indicate that civil infrastructure systems such as gravel roads and pile foundations affect permafrost by thickening the active layer, lowering theVs, and reducing heterogeneity. We show how the resultingVsprofiles can be used to estimate key parameters for designing buildings in permafrost regions and maintaining existing infrastructure in polar regions.  more » « less
Award ID(s):
2034363 2437668 2034366 2034380 2243961 2243962
PAR ID:
10495690
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
129
Issue:
3
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Permafrost degradation in Arctic lowlands is a critical geomorphic process, increasingly driven by climate warming and infrastructure development. This study applies an integrated geophysical and surveying approach – Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and thaw probing – to characterize near-surface permafrost variability across four land use types in Utqiaġvik, Alaska: gravel road, snow fence, residential building and undisturbed tundra. Results reveal pronounced heterogeneity in thaw depths (0.2 to >1 m) and ice content, shaped by both natural features such as ice wedges and frost heave and anthropogenic disturbances. Roads and snow fences altered surface drainage and snow accumulation, promoting differential thaw, deeper active layers, and localized ground deformation. Buildings in permafrost regions alter the local thermal regime through multiple interacting factors – for example, solar radiation, thermal leakage, snow cover dynamics, and surface disturbance – among others. ERT identified high-resistivity zones (>1,000 Ω·m) interpreted as ice-rich permafrost and low-resistivity features (<5 Ω·m) likely associated with cryopegs or thaw zones. GPR delineated subsurface stratigraphy and supported interpretation of ice-rich layers and permafrost features. These findings underscore the strong spatial coupling between surface infrastructure and subsurface thermal and hydrological regimes in ice-rich permafrost. Geophysical methods revealed subsurface features and thaw depth variations across different land use types in Utqiaġvik, highlighting how infrastructure alters permafrost conditions. These findings support localized assessment of ground stability in Arctic environments. 
    more » « less
  2. Abstract. Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments. 
    more » « less
  3. Abstract Permafrost thaw and thermokarst development pose urgent challenges to Arctic communities, threatening infrastructure and essential services. This study examines the reciprocal impacts of permafrost degradation and infrastructure in Point Lay (Kali), Alaska, drawing on field data from ∼60 boreholes, measured and modeled ground temperature records, remote sensing analysis, and community interviews. Field campaigns from 2022–2024 reveal widespread thermokarst development and ground subsidence driven by the thaw of ice-rich permafrost. Borehole analysis confirms excess-ice contents averaging ∼40%, with syngenetic ice wedges extending over 12 m deep. Measured and modeled ground temperature data indicate a warming trend, with increasing mean annual ground temperatures and active layer thickness (ALT). Since 1949, modeled ALTs have generally deepened, with a marked shift toward consistently thicker ALTs in the 21st century. Remote sensing shows ice wedge thermokarst expanded from <5% in 1949 to >60% in developed areas by 2019, with thaw rates increasing tenfold between 1974 and 2019. In contrast, adjacent, undisturbed tundra exhibited more consistent thermokarst expansion (∼0.2% yr−1), underscoring the amplifying role of infrastructure, surface disturbance, and climate change. Community interviews reveal the lived consequences of permafrost degradation, including structural damage to homes, failing utilities, and growing dependence on alternative water and wastewater strategies. Engineering recommendations include deeper pile foundations, targeted ice wedge stabilization, aboveground utilities, enhanced snow management strategies, and improved drainage to mitigate ongoing infrastructure issues. As climate change accelerates permafrost thaw across the Arctic, this study highlights the need for integrated, community-driven adaptation strategies that blend geocryological research, engineering solutions, and local and Indigenous knowledge. 
    more » « less
  4. null (Ed.)
    Surface-based 2D electrical resistivity tomography (ERT) surveys were used to characterize permafrost distribution at wetland sites on the alluvial plain north of the Tanana River, 20 km southwest of Fairbanks, Alaska, in June and September 2014. The sites were part of an ecologically-sensitive research area characterizing biogeochemical response of this region to warming and permafrost thaw, and the site contained landscape features characteristic of interior Alaska, including thermokarst bog, forested permafrost plateau, and a rich fen. The results show how vegetation reflects shallow (0–10 m depth) permafrost distribution. Additionally, we saw shallow (0–3 m depth) low resistivity areas in forested permafrost plateau potentially indicating the presence of increased unfrozen water content as a precursor to ground instability and thaw. Time-lapse study from June to September suggested a depth of seasonal influence extending several meters below the active layer, potentially as a result of changes in unfrozen water content. A comparison of several electrode geometries (dipole-dipole, extended dipole-dipole, Wenner-Schlumberger) showed that for depths of interest to our study (0–10 m) results were similar, but data acquisition time with dipole-dipole was the shortest, making it our preferred geometry. The results show the utility of ERT surveys to characterize permafrost distribution at these sites, and how vegetation reflects shallow permafrost distribution. These results are valuable information for ecologically sensitive areas where ground-truthing can cause excessive disturbance. ERT data can be used to characterize the exact subsurface geometry of permafrost such that over time an understanding of changing permafrost conditions can be made in great detail. Characterizing the depth of thaw and thermal influence from the surface in these areas also provides important information as an indication of the depth to which carbon storage and microbially-mediated carbon processing may be affected. 
    more » « less
  5. Abstract Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2V‐1s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3cm2V‐1s‐1,Here, μwis the weighted mobility, ρ is the electrical resistivity measured in mΩ cm,Tis the absolute temperature in K,Sis the Seebeck coefficient, andkB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems. 
    more » « less