Abstract Tidal freshwater zones (TFZs) are transitional environments between terrestrial and coastal waters. TFZs have freshwater chemistry and tidal physics, and yet are neither river nor estuary based on classic definitions. Such zones have been occasionally discussed in the literature but lack a consistent nomenclature and framework for study. This work proposes a measurable definition for TFZs based on three longitudinal points of interest: (1) the upstream limit of brackish water, (2) the upstream limit of bidirectional tidal velocities, and (3) the upstream limit of tidal stage fluctuations. The resulting size and position of a TFZ is transient and depends on the balance of tidal and riverine forces that evolves over event, tidal, seasonal, and annual (or longer) timescales. The concept, definition, and transient analysis of TFZ position are illustrated using field observations from the Aransas River (Texas, USA) from July 2015 to July 2016. The median Aransas TFZ length was 59.9 km, with a late summer maximum of 66.0 km and a winter minimum of 53.6 km. The TFZ typically (annual median) began 11.8 km upstream from the river mouth (15.4 km winter/11.2 km summer medians) and ended 71.7 km upstream (69.0 km/77.2 km). Seasonally low baseflow in the Aransas River promoted gradual coastal salt encroachment upstream, which shortened the TFZ. However, sporadic large rainfall/runoff events rapidly elongated the TFZ. The TFZ definition establishes a quantifiable framework for analyzing these critical freshwater systems that reside at the nexus of natural and human‐influenced hydrology, tides, and climate.
more »
« less
Hydrodynamically‐Driven Deposition of Mud in River Systems
Abstract The riverine transport and deposition of mud is the primary agent of landscape construction and evolution in many fluvial and coastal environments. Previous efforts exploring this process have raised uncertainty regarding the effects of hydrodynamic and chemical controls on the transport and deposition of mud, and thus the constructions of muddy coastal and upstream environments. As such, direct measurements are necessary to constrain the deposition of mud by river systems. Here, we combine laboratory evidence and a field investigation in the Mississippi River delta to explore the controls on the riverine transport and deposition of mud. We show that the flocculation of mud, with floc diameters greater than 10 μm, in freshwater is a ubiquitous phenomenon, causing the sedimentation of mud to be driven by changes in local hydrodynamics, and thus providing an explanation for how river systems construct landscapes through the deposition of mud in both coastal and upstream environments.
more »
« less
- Award ID(s):
- 1801142
- PAR ID:
- 10495719
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The drastic decline in sediment discharge experienced by large rivers in recent years might trigger erosion thus increasing the vulnerability of their extensive deltas. However, scarce information is available on the erosion patterns in mega‐deltas and associated physical drivers. Here a series of bathymetries in the South Passage, Changjiang Delta, were analyzed to identify morphodynamic variations during high riverine flow and tropical cyclones (TCs). Results indicate that high river flow during flood season triggers large‐scale net erosion along the inner estuary, generating elongated erosion‐deposition patches. Erosion magnitude gradually weakens moving seaward with few localized bottom variations in the offshore area. TCs transport sediment landward and are accompanied by an overall weak erosion, with a less organized spatial pattern of erosion‐deposition. TCs can therefore significantly alleviate erosion, reducing the sediment loss induced by riverine flows by over 50%. These results highlight the role of TCs on the sediment dynamics of mega‐deltas.more » « less
-
Abstract Rising sea levels, subsidence, and decreased fluvial sediment load threaten river deltas and their wetlands. However, the feedbacks between fluvial and non‐fluvial (marsh) deposition remain weakly constrained. We investigate how non‐riverine, elevation‐controlled deposition typified by marshes impacts sediment partitioning between a delta's topset, coastal zone, and foreset by comparing a delta experiment with proxy marsh accumulation to a control. Marsh accumulation alters fluvial sediment distribution by decreasing the slope in the marsh window by ∼50%, creating a 78% larger marsh zone. Fluvial incursions into the marsh window trap 1.3 times more clastic volume. The volume exported to deep water remains unchanged. Marsh deposition shifts elevation distributions toward sea level, which produces a hypsometry akin to field‐scale deltas. The elevation‐lowering effect of marshes on an equilibrium delta shown here constitutes an unexplored feedback and an important aspect of coastal sustainability.more » « less
-
Abstract Hypoxia in coastal waters and lakes is widely recognized as a detrimental environmental issue, yet we lack a comparable understanding of hypoxia in rivers. We investigated controls on hypoxia using 118 million paired observations of dissolved oxygen (DO) concentration and water temperature in over 125,000 locations in rivers from 93 countries. We found hypoxia (DO < 2 mg L−1) in 12.6% of all river sites across 53 countries, but no consistent trend in prevalence since 1950. High‐frequency data reveal a 3‐h median duration of hypoxic events which are most likely to initiate at night. River attributes were better predictors of riverine hypoxia occurrence than watershed land cover, topography, and climate characteristics. Hypoxia was more likely to occur in warmer, smaller, and lower‐gradient rivers, particularly those draining urban or wetland land cover. Our findings suggest that riverine hypoxia and the resulting impacts on ecosystems may be more pervasive than previously assumed.more » « less
-
The morphology of river levees and floodplains is an important control on river-floodplain connectivity within a river system under sub-bankfull conditions, and this morphology changes as a river approaches the coast due to backwater influence. Floodplain width can also vary along a river, and floodplain constrictions in the form of bluffs adjacent to the river can influence inundation extent. However, the relative controls of backwater-influenced floodplain topography and bluff topography on river-floodplain connectivity have not been studied. We measure discharge along the lower Trinity River (Texas, USA) during high flow to determine which floodplain features are associated with major river-floodplain flow exchanges. We develop a numerical model representing the transition to backwater-dominated river hydraulics, and quantify downstream changes in levee channelization, inundation, and fluxes along the river-floodplain boundary. We model passive particle transport through the floodplain, and compute residence times as a function of location where particles enter the floodplain. We find that bluff topography controls flow from the floodplain back to the river, whereas levee topography facilitates flow to the floodplain through floodplain channels. Return flow to the river is limited to locations just upstream of bluffs, even under receding flood conditions, whereas outflow locations are numerous and occur all along the river. Residence times for particles entering the floodplain far upstream of bluffs are as much as two orders of magnitude longer than those for particles entering short distances upstream of bluffs. This study can benefit floodplain ecosystem management and restoration plans by informing on the key locations of lateral exchange and variable residence time distributions in river-floodplain systems.more » « less
An official website of the United States government
