Abstract We investigated the difficulties that physics students in upper-level undergraduate quantum mechanics and graduate students after quantum and statistical mechanics core courses have with the Fermi energy, the Fermi–Dirac distribution and total electronic energy of a free electron gas after they had learned relevant concepts in their respective courses. These difficulties were probed by administering written conceptual and quantitative questions to undergraduate students and asking some undergraduate and graduate students to answer those questions while thinking aloud in one-on-one individual interviews. We find that advanced students had many common difficulties with these concepts after traditional lecture-based instruction. Engaging with a sequence of clicker questions improved student performance, but there remains room for improvement in their understanding of these challenging concepts.
more »
« less
“I think”: integrating project-based learning and case study to teach fundamentals of evolutionary tree-thinking
The theory and practice of evolutionary tree-thinking is pervasive through many scientific fields and is a critical component of biological literacy. Many elements of tree-thinking are introduced early in undergraduate biology education. However, basic concepts are often not revisited/reinforced and are assumed to have been fully conceptually grasped in upper-level courses and beyond. Here, we present a project-based activity that we developed to aid upper-level biology students to learn, conceptualize, and practice tree-thinking. This approach allows them to identify the misconceptions that they may have about tree-thinking, while reinforcing the theories and concepts that they may have encountered in introductory courses. It also integrates several pedagogical styles (instructor-led and student-centered), along with an organismal case study to make concepts concrete and realistic to students.
more »
« less
- PAR ID:
- 10495761
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Evolution: Education and Outreach
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1936-6434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research is focused on the adoption of an experiment-centric teaching approach to enhance student’s learning, develop their critical thinking skills, and help students better understand the underlying concepts in biology, thereby giving them a better comprehension of how these concepts may be applied in practice as well as facilitating their academic success. Traditional and experiment-centric teaching methods are used to instruct students in four biology courses (BIO 101-W09 Introductory Biology for Non-Major, Bio 103 Introductory Biology for Nursing Major, BIO 109-001 Foundations in Biology, Diversity, and Organismal Systems and Bio 201. Anatomy and Physiology I) taken by first and second-year students. The sensor from a heart rate app is used to conduct and monitor several common experiments in Biology. On phone screens, the data gathered from these experiments can be visualized in real-time. In order to measure the key constructs associated with students’ success (motivation, epistemic and perceptual curiosity, and self-efficacy), data collection was done pre-and post-implementation of the experiments using the Motivated Strategies for Learning Questionnaire (MSLQ) developed by Pintrich, Smith, García, and McKeachie, in 1991. Also, the Classroom Observation Protocol for Undergraduate STEM (COPUS) was employed to characterize the simultaneous activities of instructors and learners during class sessions. More so, students’ understanding of the course and how they process instructions were evaluated using signature assignments. Data analysis would be conducted using Statistical Package for Social Scientists (SPSS 25.0). This research would carefully investigate the association between students’ motivation and their gender at 95% confidence level.more » « less
-
null (Ed.)Synopsis Early exposure to course-based undergraduate research experiences (CUREs) in introductory biology courses can promote positive student outcomes such as increased confidence, critical thinking, and views of applicability in lower-level courses, but it is unknown if these same impacts are achieved by upper-level courses. Upper-level courses differ from introductory courses in several ways, and one difference that could impact these positive student outcomes is the importance of balancing structure with independence in upper-level CUREs where students typically have more autonomy and greater complexity in their research projects. Here we compare and discuss two formats of upper-level biology CUREs (Guided and Autonomous) that vary along a continuum between structure and independence. We share our experiences teaching an upper-level CURE in two different formats and contrast those formats through student reported perceptions of confidence, professional applicability, and CURE format. Results indicate that the Guided Format (i.e., a more even balance between structure and independence) led to more positive impacts on student outcomes than the Autonomous Format (less structure and increased independence). We review the benefits and drawbacks of each approach while considering the unique elements of upper-level courses relative to lower-level courses. We conclude with a discussion of how implementing structured skill-building can assist instructors in adapting CUREs to their courses.more » « less
-
Parallel and distributed computing (PDC) has become pervasive in all aspects of computing, and thus it is essential that students include parallelism and distribution in the computational thinking that they apply to problem solving, from the very beginning. Computer science education is still teaching to a 20th century model of algorithmic problem solving. Sequence, branch, and loop are taught in our early courses as the only organizing principles needed for algorithms, and we invest considerable time in showing how best to sequentially process large volumes of data. All computing devices that students use currently have multiple cores as well as a GPU in many cases. Most of their favorite applications use multiple cores and numbers of distributed processors. Often concurrency offers simpler solutions than sequential approaches. Industry is desperate for software engineers who think naturally in terms of exploiting these capabilities, rather than seeing them as an exotic upper-level topic that gets layered over a sequential solution. However, we are still teaching students to solve problems using sequential thinking. In this workshop we overview key PDC concepts and provide examples of how they may naturally be incorporated in early computing classes. We will introduce plugged and unplugged curriculum modules that have been successfully integrated in existing computing classes at multiple institutions. We will highlight the upcoming summer training workshop, for which we have funding to support attendance, as well as other CDER (Center for Parallel and Distributed Computing Curriculum Development and Educational Resources) activities.more » « less
-
Pamucar, Dragan (Ed.)Critical thinking is the process by which people make decisions about what to trust and what to do. Many undergraduate courses, such as those in biology and physics, include critical thinking as an important learning goal. Assessing critical thinking, however, is non-trivial, with mixed recommendations for how to assess critical thinking as part of instruction. Here we evaluate the efficacy of assessment questions to probe students’ critical thinking skills in the context of biology and physics. We use two research-based standardized critical thinking instruments known as the Biology Lab Inventory of Critical Thinking in Ecology (Eco-BLIC) and Physics Lab Inventory of Critical Thinking (PLIC). These instruments provide experimental scenarios and pose questions asking students to evaluate what to trust and what to do regarding the quality of experimental designs and data. Using more than 3000 student responses from over 20 institutions, we sought to understand what features of the assessment questions elicit student critical thinking. Specifically, we investigated (a) how students critically evaluate aspects of research studies in biology and physics when they are individually evaluating one study at a time versus comparing and contrasting two and (b) whether individual evaluation questions are needed to encourage students to engage in critical thinking when comparing and contrasting. We found that students are more critical when making comparisons between two studies than when evaluating each study individually. Also, compare-and-contrast questions are sufficient for eliciting critical thinking, with students providing similar answers regardless of if the individual evaluation questions are included. This research offers new insight on the types of assessment questions that elicit critical thinking at the introductory undergraduate level; specifically, we recommend instructors incorporate more compare-and-contrast questions related to experimental design in their courses and assessments.more » « less
An official website of the United States government

