skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An environmental habitat gradient and within-habitat segregation enable co-existence of ecologically similar bird species
Niche theory predicts that ecologically similar species can coexist through multidimensional niche partitioning. However, owing to the challenges of accounting for both abiotic and biotic processes in ecological niche modelling, the underlying mechanisms that facilitate coexistence of competing species are poorly understood. In this study, we evaluated potential mechanisms underlying the coexistence of ecologically similar bird species in a biodiversity-rich transboundary montane forest in east-central Africa by computing niche overlap indices along an environmental elevation gradient, diet, forest strata, activity patterns and within-habitat segregation across horizontal space. We found strong support for abiotic environmental habitat niche partitioning, with 55% of species pairs having separate elevation niches. For the remaining species pairs that exhibited similar elevation niches, we found that within-habitat segregation across horizontal space and to a lesser extent vertical forest strata provided the most likely mechanisms of species coexistence. Coexistence of ecologically similar species within a highly diverse montane forest was determined primarily by abiotic factors (e.g. environmental elevation gradient) that characterize the Grinnellian niche and secondarily by biotic factors (e.g. vertical and horizontal segregation within habitats) that describe the Eltonian niche. Thus, partitioning across multiple levels of spatial organization is a key mechanism of coexistence in diverse communities.  more » « less
Award ID(s):
1954406 2213565
PAR ID:
10495945
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2005
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Island mammals have influenced ecological and evolutionary theory since Darwin, and many of them provide textbook examples of the dramatic morphological evolution that often occurs in island communities. However, patterns of evolution in the climatic niches of island mammals have yet to be fully explored. Several hypotheses explaining niche divergence in island species have been introduced, linking niche evolution to increased competition among closely related or sympatric species, and as a by‐product of morphological evolution or geographical patterns. Here, we evaluate these hypotheses using closely related species pairs (sister taxa). We characterized the climatic niches of island endemic species and their closest relatives and calculated two metrics of niche divergence between the species (niche overlap and centroid distance). We compared these metrics between island endemics that have island‐dwelling sister taxa and those that have mainland‐dwelling sister taxa. We then related the degree of niche divergence to phylogenetic relatedness between the sister taxa, sympatry, morphological trait differences and island characteristics (isolation, size, age). Overall, despite significant niche divergence across species pairs, we found little evidence that competition or biotic interactions drive large‐scale climatic niche evolution in island mammals. Niche divergence in island‐endemic mammals is not driven by sympatry with their closest relatives, nor is it linked to phylogenetic relatedness. Furthermore, the phenotypic evolution of island‐endemic species does not lead to corresponding evolution in climatic niches. Instead, abiotic, geographical patterns appear to drive niche divergence in these species. Sister taxa that were more geographically isolated from each other had significantly lower niche overlaps. Island‐endemic mammals that live in montane regions likewise diverged from their closest relatives. These results suggest that competition between related species on islands may lead to niche partitioning only on local scales and that niche evolution in island‐endemic mammals may occur primarily in response to geographical patterns. 
    more » « less
  2. Restricted elevational ranges are common across tropical montane species, but the mechanisms generating and maintaining these patterns remain poorly resolved. A long-standing hypothesis is that specialized thermal physiology explains these distributions. However, biotic factors such as habitat and interspecific competition have also been proposed to limit tropical species’ elevational ranges. We combined point-level abundances, respirometry-based measurements of metabolic rate, habitat surveys and playback experiments to simultaneously test these three hypotheses for four species of Central American cloud forest songbirds. Contrary to the physiological hypothesis, we found no evidence that thermoregulatory costs constrain species distributions. Instead, thermal conditions across each species’ elevational range remained well within sustainable limits, staying ≤65% of hypothesized thresholds for tropical birds, even at the highest elevations. By contrast, we found some support for a combined role of habitat and competition in shaping elevational ranges. In one related species pair, the dominant lower-elevation species appears restricted by microhabitat, while the higher-elevation species is likely prevented from expanding downslope by the presence of this congener. Taken together, we conclude that thermoregulatory costs are an inadequate explanation for elevational range limits of tropical birds at our site and suggest that biotic factors can be key in shaping these distributions. We provide a Spanish translation of the Abstract in the supplementary materials. 
    more » « less
  3. ABSTRACT Niche partitioning promotes species coexistence. Yet, it remains unclear how phylogeny and morphology influence the trophic niches of closely related aquatic species with shared feeding modes. Freshwater mussels (Family: Unionidae) are a group of filter‐feeding bivalves that are ideal for investigating mechanisms of niche partitioning. Particle size selection and patterns of ingestion are controlled by gill latero‐frontal cirri density (CD) and the number of cilia per cirrus (CC). We investigated trophic assimilation and niche area using stable isotope signatures (𝛿13C and 𝛿15N) and gill morphology with scanning‐electron microscopy for a diverse mussel assemblage from the Sipsey River, Alabama, USA. We predicted that (1) trophic niches and gill morphology would differ within and among species across sites; (2) co‐occurring species would partition food resources; (3) greater phylogenetic distances among species would result in increased trophic dissimilarity; (4) more CC and higher CD would result in a narrower trophic niche area, or more constrained range of food items assimilated. We found that (1) species identity and site influenced gill morphology and stable isotope signatures but that the trophic niche area of a species was only affected by species identity; (2) the average proportion of niche area overlap between co‐occurring species was low across sites (0.04 to 0.18); (3) trophic dissimilarity among species increased with phylogenetic distance; (4) CD but not the number of CC negatively related to trophic niche area. Our results indicate that gill morphology and evolutionary history are likely key factors governing the trophic niches of mussels. In addition, intraspecific variation in gill morphology across sites may either reflect a phenotypic response to differences in local resource availability or suggest that other mechanisms shape particle selection. Examining the interplay among the trophic niche, phylogeny, and morphology among functionally similar species further informs our understanding of the mechanisms facilitating their coexistence. 
    more » « less
  4. Abstract Biological invasions are usually examined in the context of their impacts on native species. However, few studies have examined the dynamics between invaders when multiple exotic species successfully coexist in a novel environment. Yet, long‐term coexistence of now established exotic species has been observed in North American lady beetle communities. Exotic lady beetlesHarmonia axyridisandCoccinella septempunctatawere introduced for biological control in agricultural systems and have since become dominant species within these communities. In this study, we investigated coexistence via spatial and temporal niche partitioning amongH. axyridisandC. septempunctatausing a 31‐year data set from southwestern Michigan, USA. We found evidence of long‐term coexistence through a combination of small‐scale environmental, habitat, and seasonal mechanisms. Across years,H. axyridisandC. septempunctataexperienced patterns of cyclical dominance likely related to yearly variation in temperature and precipitation. Within years, populations ofC. septempunctatapeaked early in the growing season at 550 degree days, whileH. axyridispopulations grew in the season until 1250 degree days and continued to have high activity after this point.C. septempunctatawas generally most abundant in herbaceous crops, whereasH. axyridisdid not display strong habitat preferences. These findings suggest that within this regionH. axyridishas broader habitat and abiotic environmental preferences, whereasC. septempunctatathrives under more specific ecological conditions. These ecological differences have contributed to the continued coexistence of these two invaders. Understanding the mechanisms that allow for the coexistence of dominant exotic species contributes to native biodiversity conservation management of invaded ecosystems. 
    more » « less
  5. Abstract AimPhysiological tolerances and biotic interactions along habitat gradients are thought to influence species occurrence. Distributional differences caused by such forces are particularly noticeable on tropical mountains, where high species turnover along elevational gradients occurs over relatively short distances and elevational distributions of particular species can shift among mountains. Such shifts are interpreted as evidence of the importance of spatial variation in interspecific competition and habitat or climatic gradients. To assess the relative importance of competition and compression of habitat and climatic zones in setting range limits, we examined differences in elevational ranges of forest bird species among four Bornean mountains with distinct features. LocationBornean mountains Kinabalu, Mulu, Pueh and Topap Oso. TaxonRain forest bird communities along elevational gradients. MethodsWe surveyed the elevational ranges of rain forest birds on four mountains in Borneo to test which environmental variables—habitat zone compression or presence of likely competitors—best predicted differences in elevational ranges of species among mountains. For this purpose, we used two complementary tests: a comparison of elevational range limits between pairs of mountains, and linear mixed models with naïve occupancy as the response variable. ResultsWe found that lowland species occur higher in elevation on two small mountains compared to Mt. Mulu. This result is inconsistent with the expectation that distributions of habitats are elevationally compressed on small mountains, but is consistent with the hypothesis that a reduction in competition (likely diffuse) on short mountains, which largely lack montane specialist species, allows lowland species to occur higher in elevation. The relative influence of competition changes with elevation, and the correlation between lower range limits of montane species and the distribution of their competitors was weaker than in lowland species. Main conclusionsThese findings provide support for the importance of biotic interactions in setting elevational range limits of tropical bird species, although abiotic gradients explain the majority of distribution patterns. Thus, models predicting range shifts under climate change scenarios must include not only climatic variables, as is currently most common, but also information on potentially resulting changes in species interactions, especially for lowland species. 
    more » « less