skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2213565

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Research Highlight:Dri, G. F., Bogdziewicz, M., Hunter, M., Witham, J., & Mortelliti, A. (2025). Coupled effects of forest growth and climate change on small mammal abundance and body weight: Results of a 39‐year field study.Journal of Animal Ecology.https://doi.org/10.1111/1365‐2656.70114. Biodiversity is declining due to global environmental change, yet it remains challenging to assess how specific drivers, such as climate change, affect the dynamics and trends of individual species. While many studies correlate climate variables with species abundance or occurrence, few explicitly link environmental drivers to demographic processes to uncover the mechanisms behind population trends. Such insight requires long‐term data capable of revealing slow‐moving, nonlinear trends and disentangling natural variability from directional change. In a 39‐year study, Dri et al. (2025) demonstrate the power of sustained observation and mechanistic approaches by linking climate warming and forest maturation to increased acorn production, which enhanced body condition and survival in white‐footed mice, ultimately driving population increases. Their findings underscore the importance of long‐term data for identifying meaningful ecological trends and tracing the causal pathways by which biodiversity changes. Effective conservation under global change depends on two key shifts: greater investment in long‐term biodiversity monitoring and broader adoption of frameworks that explicitly connect environmental drivers to demographic responses. Together, these approaches provide the foundation for adaptive, evidence‐based conservation strategies in a rapidly changing world. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract AimSpecies distribution models (SDMs) are increasingly applied across macroscales using detection‐nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks. InnovationHere we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (Ammodramus savannarum) occurrence across the continental United States. Main conclusionsWe found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation. 
    more » « less
  3. Abstract Numerous modelling techniques exist to estimate abundance of plant and animal populations. The most accurate methods account for multiple complexities found in ecological data, such as observational biases, spatial autocorrelation, and species correlations. There is, however, a lack of user‐friendly and computationally efficient software to implement the various models, particularly for large data sets.We developed thespAbundance Rpackage for fitting spatially explicit Bayesian single‐species and multi‐species hierarchical distance sampling models, N‐mixture models, and generalized linear mixed models. The models within the package can account for spatial autocorrelation using Nearest Neighbour Gaussian Processes and accommodate species correlations in multi‐species models using a latent factor approach, which enables model fitting for data sets with large numbers of sites and/or species.We provide three vignettes and three case studies that highlightspAbundancefunctionality. We used spatially explicit multi‐species distance sampling models to estimate density of 16 bird species in Florida, USA, an N‐mixture model to estimate black‐throated blue warbler (Setophaga caerulescens) abundance in New Hampshire, USA, and a spatial linear mixed model to estimate forest above‐ground biomass across the continental USA.spAbundanceprovides a user‐friendly, formula‐based interface to fit a variety of univariate and multivariate spatially explicit abundance models. The package serves as a useful tool for ecologists and conservation practitioners to generate improved inference and predictions on the spatial drivers of abundance in populations and communities. 
    more » « less
  4. Abstract As data and computing power have surged in recent decades, statistical modeling has become an important tool for understanding ecological patterns and processes. Statistical modeling in ecology faces two major challenges. First, ecological data may not conform to traditional methods, and second, professional ecologists often do not receive extensive statistical training. In response to these challenges, the journalEcologyhas published many innovative statistical ecology papers that introduced novel modeling methods and provided accessible guides to statistical best practices. In this paper, we reflect onEcology's history and its role in the emergence of the subdiscipline of statistical ecology, which we define as the study of ecological systems using mathematical equations, probability, and empirical data. We showcase 36 influential statistical ecology papers that have been published inEcologyover the last century and, in so doing, comment on the evolution of the field. As data and computing power continue to increase, we anticipate continued growth in statistical ecology to tackle complex analyses and an expanding role forEcologyto publish innovative and influential papers, advancing the discipline and guiding practicing ecologists. 
    more » « less
  5. Abstract Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi‐species detection–nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi‐species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in thespOccupancysoftware, designed to facilitate application via an accessible, well documented, and open‐source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi‐species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation inspOccupancy, serves as a user‐friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi‐species detection–nondetection data. 
    more » « less
  6. Abstract Data deficiencies among rare or cryptic species preclude assessment of community‐level processes using many existing approaches, limiting our understanding of the trends and stressors for large numbers of species. Yet evaluating the dynamics of whole communities, not just common or charismatic species, is critical to understanding and the responses of biodiversity to ongoing environmental pressures.A recent surge in both public science and government‐funded data collection efforts has led to a wealth of biodiversity data. However, these data collection programmes use a wide range of sampling protocols (from unstructured, opportunistic observations of wildlife to well‐structured, design‐based programmes) and record information at a variety of spatiotemporal scales. As a result, available biodiversity data vary substantially in quantity and information content, which must be carefully reconciled for meaningful ecological analysis.Hierarchical modelling, including single‐species integrated models and hierarchical community models, has improved our ability to assess and predict biodiversity trends and processes. Here, we highlight the emerging ‘integrated community modelling’ framework that combines both data integration and community modelling to improve inferences on species‐ and community‐level dynamics.We illustrate the framework with a series of worked examples. Our three case studies demonstrate how integrated community models can be used to extend the geographic scope when evaluating species distributions and community‐level richness patterns; discern population and community trends over time; and estimate demographic rates and population growth for communities of sympatric species. We implemented these worked examples using multiple software methods through the R platform via packages with formula‐based interfaces and through development of custom code in JAGS, NIMBLE and Stan.Integrated community models provide an exciting approach to model biological and observational processes for multiple species using multiple data types and sources simultaneously, thus accounting for uncertainty and sampling error within a unified framework. By leveraging the combined benefits of both data integration and community modelling, integrated community models can produce valuable information about both common and rare species as well as community‐level dynamics, allowing for holistic evaluation of the effects of global change on biodiversity. 
    more » « less
  7. Free, publicly-accessible full text available August 1, 2026
  8. Forecasting the future state of a species is a tricky process, as there are numerous hidden factors that influence species trajectories in addition to the obvious unknowns about the future state of the planet. We echo the guidance of Clare et al. (2024) to use near‐term and long‐term forecasting in complementary ways. Near‐term forecasts can be used to guide specific management and conservation actions, which can be updated as new data and evidence are collected. Long‐term forecasts can be used to characterize uncertainty further into the future, which can help guide longstanding conservation planning and legislative actions that are based on such uncertainty in possible future outcomes. 
    more » « less
  9. Niche theory predicts that ecologically similar species can coexist through multidimensional niche partitioning. However, owing to the challenges of accounting for both abiotic and biotic processes in ecological niche modelling, the underlying mechanisms that facilitate coexistence of competing species are poorly understood. In this study, we evaluated potential mechanisms underlying the coexistence of ecologically similar bird species in a biodiversity-rich transboundary montane forest in east-central Africa by computing niche overlap indices along an environmental elevation gradient, diet, forest strata, activity patterns and within-habitat segregation across horizontal space. We found strong support for abiotic environmental habitat niche partitioning, with 55% of species pairs having separate elevation niches. For the remaining species pairs that exhibited similar elevation niches, we found that within-habitat segregation across horizontal space and to a lesser extent vertical forest strata provided the most likely mechanisms of species coexistence. Coexistence of ecologically similar species within a highly diverse montane forest was determined primarily by abiotic factors (e.g. environmental elevation gradient) that characterize the Grinnellian niche and secondarily by biotic factors (e.g. vertical and horizontal segregation within habitats) that describe the Eltonian niche. Thus, partitioning across multiple levels of spatial organization is a key mechanism of coexistence in diverse communities. 
    more » « less